[1]Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature [J]. Materials Science and Engineering A, 2013, 586: 276-283. [2]Herrmann J, Inden G, Sauthoff G. Deformation behaviour of iron-rich iron-aluminium alloys at high temperatures [J]. Acta Materialia, 2003, 51(11): 3233-3242. [3]Morris D G, Muñoz-Morris M A, Requejo L M. Work hardening in Fe-Al alloys [J]. Materials Science and Engineering A, 2007, 460: 163-173. [4]Zhang L, Song R, Chao Z, et al. Evolution of the microstructure and mechanical properties of an austenite-ferrite Fe-Mn-Al-C steel [J]. Materials Science and Engineering A, 2015, 643: 183-193. [5]Sohn S S, Song H, Suh B C, et al. Novel ultra-high-strength (ferrite+austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization [J]. Acta Materialia, 2015, 96: 301-310. [6]Yang M X, Yuan F P, Xie Q G, et al. Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel [J]. Acta Materialia, 2016, 109: 213-222. [7]Zhao C, Song R, Zhang L, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7C low-density steel [J]. Materials and Design, 2016, 91: 348-360. [8]Rana R, Liu C, Ray R K. Low-density low-carbon Fe-Al ferritic steels [J]. Scripta Materialia, 2013, 68(6): 354-359. [9]Welsch E, Ponge D, Hafez Haghighat S M, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel [J]. Acta Materialia, 2016, 116: 188-199. [10]Chen A S, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Progress in Materials Science, 2017, 89: 345-391. [11]Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels [J]. Steel Research International, 2006, 77(9-10): 627-633. [12]马 涛, 李慧蓉, 高建新, 等. 合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述[J]. 材料导报, 2020, 34(11): 153-161. Ma Tao, Li Huirong, Gao Jianxin, et al. Effect of alloying elements and aging treatment on the properties of κ-carbide in Fe-Mn-Al-C low density steels: A review [J]. Materials Reports, 2020, 34(11): 153-161. [13]Li D, Feng Y, Song S, et al. Influences of silicon on the work hardening behavior and hot deformation behavior of Fe-25wt%Mn-(Si, Al) TWIP steel [J]. Journal of Alloys and Compounds, 2015, 618: 768-775. [14]陈兴品, 李文佳, 任 平, 等. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957. Chen Xingpin, Li Wenjia, Ren Ping, et al. Effects of C content on microstructure and properties of Fe-Mn-Al-C low-density steels [J]. Acta Metallurgica Sinica, 2019, 55(8): 951-957. [15]Kim C, Hong H U, Jang J H, et al. Reverse partitioning of Al from κ-carbide to the γ-matrix upon Ni addition and its strengthening effect in Fe-Mn-Al-C lightweight steel [J]. Materials Science and Engineering A, 2021, 820(8): 141563. [16]Choi K, Seo C, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel [J]. Scripta Materialia, 2010, 63(10): 1028-1031. [17]Zhang J, Jiang Y, Zheng W, et al. Revisiting the formation mechanism of intragranular κ-carbide in austenite of a Fe-Mn-Al-Cr-C low-density steel [J]. Scripta Materialia, 2021, 199(3): 113836. [18]Porter D A, Easterlink K E. Phase Transformations in Metals and Alloys [M]. Van Nostrand Reinhold, 2009. [19]Philippe T, Blavette D. Nucleation pathway in coherent precipitation [J]. Philosophical Magazine, 2011, 91(36): 4606-4622. [20]Seol J, Raabe D, Choi P, et al. Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe-Mn-Al-C alloy studied by transmission electron microscopy and atom probe tomography [J]. Scripta Materialia, 2013, 68(6): 348-353. [21]雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006. |