[1]郭 红, 刘 英, 李 卫. 挖掘机斗齿的磨损机制与选材研究[J]. 材料导报, 2014, 28(7): 99-103. Guo Hong, Liu Ying, Li Wei. The investigation of wear mechanism and material selection of bucket teeth on excavator[J]. Materials Review, 2014, 28(7): 99-103. [2]张伟旗. 大型矿山挖掘机斗齿失效机制及控制研究[J]. 有色设备, 2017(3): 5-10. Zhang Weiqi. Study on the failure mechanism and control of bucketteeth in large-scale mine excavator[J]. Nonferrous Metallurgical Equipment, 2017(3): 5-10. [3]Singla S, Kang A S, Grewal J S, et al. Wear behavior of weld overlays on excavator bucket teeth[J]. Procedia Materials Science, 2014, 5: 256-266. [4]唐春霞, 曹文全. 耐磨钢的国内生产现状及发展前景[J]. 宽厚板, 2018, 24(3): 37-41. Tang Chunxia, Cao Wenquan. Current production situation and development prospect of wear resistant steel at home[J]. Wide and Heavy Plate, 2018, 24(3): 37-41. [5]郑丽丽, 彭 军, 安胜利, 等. 国内外铲齿用钢的研究现状与发展前景[J]. 金属热处理, 2020, 45(5): 229-235. Zheng Lili, Peng Jun, An Shengli, et al. Research status and development prospect of steels for shovel teeth at home and abroad[J]. Heat Treatment of Metals, 2020, 45(5): 229-235. [6]周志丹, 陈 烜, 刘金龙. 提高挖掘机斗齿寿命的研究现状和发展[J]. 煤矿机械, 2011, 32(3): 7-9. Zhou Zhidan, Chen Xuan, Liu Jinlong. Study on development and improving lifetime of excavator teeth[J]. Coal Mining Machinery, 2011, 32(3): 7-9. [7]王宇飞, 智爱娟, 张冠峰, 等. 锻造斗齿的热处理工艺及组织性能[J]. 金属热处理, 2020, 45(1): 188-192. Wang Yufei, Zhi Aijuan, Zhang Guanfeng, et al. Heat treatment process of forged bucket tooth and its microstructure and properties[J]. Heat Treatment of Metals, 2020, 45(1): 188-192. [8]Bhadeshia H K D H. Bainite in Steels: Transformation, Microstructure and Properties[M]. 2nd Edition. London: IOM Communications, 2001: 19. [9]Garcia-Mateo C, Caballero F G. Ultra-high-strength bainitic steels[J]. ISIJ International, 2005, 45(11): 1736-1740. [10]万响亮, 胡 锋, 成 林, 等. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511. Wan Xiangliang, Hu Feng, Cheng Lin, et al. Effect of two-step bainite transformation on toughness of medium carbon micro/nano-structured steel[J]. Acta Metallurgica Sinica, 2019, 55(12): 1503-1511. [11]吴亚杰, 吴开明. 热处理工艺对高碳贝氏体钢组织与力学性能的影响[J]. 武汉科技大学学报, 2019, 42(5): 321-327. Wu Yajie, Wu Kaiming. Effect of heat treatment process on microstructure and mechanical properties of high carbon bainitic steel[J]. Journal of Wuhan University of Science and Technology, 2019, 42(5): 321-327. [12]张 珣. 彩色金相在电力系统的应用[J]. 安徽电力职工大学学报, 2002(1): 1-2. Zhang Xun. Application of color metallography in power system[J]. Journal of Anhui Electric Power University, 2002(1): 1-2. [13]韩 波, 张福成, 吕 博, 等. 贝氏体钢彩色金相的研究[J]. 金属热处理, 2009, 34(10): 42-45. Han Bo, Zhang Fucheng, Lü Bo, et al. Colored metallography of bainite steel[J]. Heat Treatment of Metals, 2009, 34(10): 42-45. [14]Garcia-Mateo C, Caballero F G, Sourmail T, et al. Tensile behaviour of a nanocrystalline bainitic steel containing 3wt% silicon[J]. Materials Science and Engineering A, 2012, 549: 185 -192. [15]张 憬, 卢雅琳, 周东帅, 等. 热轧变形量对 7085 铝合金微观组织与力学性能的影响[J]. 塑性工程学报, 2018(4): 173-180. Zhang Jing, Lu Yalin, Zhou Dongshuai, et al. Effect of hot rolling deformation on microstructure and mechanical properties of aluminum alloy 7085[J]. Journal of Plasticity Engineering, 2018(4): 173 -180. [16]李 炎, 刘玉亮, 任凤章. TiNbTaZr合金形变诱发马氏体的相变机制[J]. 材料热处理学报. 2013, 34(4): 32-35. Li Yan, Liu Yuliang, Ren Fengzhang. Transformation mechanism of deformation-induced martensite in TiNbTaZr alloy[J]. Transactions of Materials and Heat Treatment, 2013, 34(4), 32-35. [17]成 琴, 吴恒安, 王 宇, 等. Cu-Zr纳米丝应力诱导马氏体相变和高超弹性效应[C]//中国力学学会学术大会2009论文摘要集, 2009: 319. Cheng Qin, Wu Heng'an, Wang Yu, et al. Cu-Zr Nanowires stress induced martensitic transformation and high superelasticity[C]//Chinese Society of Mechanics Academic Conference 2009 Abstracts. 2009: 319. [18]Su C H, Li Q G, Huang X F, et al. Effect of bainite microstructure during two-step quenching and partitioning process on strengthand toughness properties of a 0.3%C bainitic steel[J]. Journal of Iron and Steel Research International, 2018, 25(2): 235-242. [19]徐小军, 刘捍卫, 朱旻昊, 等. Ti-Al-Zr钛合金的高温微动磨损行为研究[J]. 核动力工程, 2010, 31(5): 42-47 Xu Xiaojun, Liu Hanwei, Zhu Minhao, et al. Study on high temperature fretting wear of Ti-Al-Zr alloy[J]. Nuclear Power Engineering, 2010, 31(5): 42-47. [20]Markov D. Laboratory tests for wear of rail and wheel steels[J]. Wear, 1995, 16(1): 47-50. |