[1]Tolga D, Costas S. Recent developments in advanced aircraft aluminium alloys [J]. Materials and Design, 2014, 56: 862-871. [2]Eivani A R, Ahmed H, Zhou J, et al. An experimental and theoretical investigation of the formation of Zr-containing dispersoids in Al-4. 5Zn-1Mg aluminum alloy [J]. Materials Science and Engineering A, 2010, 527(9): 2418-2430. [3]Li W B, Pan Q L, Xia Y P, et al. Microstructural evolution of ultra-high strength Al-Zn-Cu-Mg-Zr alloy containing Sc during homogenization [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(10): 2127-2133. [4]Deng Y, Yin Z M, Cong F G. Intermetallic phase evolution of 7050 aluminum alloy during homogenization [J]. Intermetallics, 2012, 26: 114-121. [5]Kassim S, Marcio A, Dilermando N, et al. Effect of pre-strain on the fatigue life of 7050-T7451 aluminium alloy [J]. Materials Science and Engineering A, 2007, 464(1/2): 141-150. [6]Chang Y L, Hung F Y, Lui T S. Anew infrared heat treatment on hot forging 7075 aluminum alloy: Microstructure and mechanical properties [J]. Materials, 2020, 13(5): 1177. [7]Davidkov A, Petrov R H, Smet P D, et al. Microstructure controlled bending response in AA6016 Al alloys [J]. Materials Science and Engineering A, 2011, 528(22/23): 7068-7076. [8]刘 川. 汽车铝合金覆盖件原始板材组织性能分析与自然时效对其弯曲性能的影响研究[D]. 重庆: 重庆大学, 2015. Liu Chuan. The microstructures and mechanical properties of automotive aluminum sheets and the effects of natural aging on their bendability[D]. Chongqing: Chongqing University, 2015. [9]Fooladfar H, Hashemi B, Younesi M. The effect of the surface treating and high-temperature aging on the strength and SCC susceptibility of 7075 aluminum alloy [J]. Journal of Materials Engineering and Performance, 2010, 19(6): 852-859. [10]Marlaud T, Malki B, Henon C, et al. Relationship between alloy composition, microstructure and exfoliation corrosion in Al-Zn-Mg-Cu alloys [J]. Corrosion Science, 2011, 53(10): 3139-3149. [11]Liu M, Klobes B, Maier K. On the age-hardening of an Al-Zn-Mg-Cu alloy: A vacancy perspective [J]. Scripta Materialia, 2011, 64(1): 21-24. [12]Lin Y C, Jiang Y Q, Chen X M, et al. Effect of creep-aging on precipitates of 7075 aluminum alloy [J]. Materials Science and Engineering A, 2013, 588: 347-356. [13]Han N M, Zhang X M, Liu S D, et al. Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050 [J]. Materials Science and Engineering A, 2011, 528(10/11): 3714-3721. [14]Lin Y C, Zhang J L, Guan L, et al. Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al-Zn-Mg-Cu alloy [J]. Materials and Design, 2015, 83: 866-875. [15]Ozer G, Karaaslan A. Properties of AA7075 aluminum alloy in aging and retrogression and reaging process [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(11): 2357-2362. [16]Peng G S, Chen K H, Chen S Y. Influence of dual retrogression and re-aging temper on microstructure, strength and exfoliation corrosion behavior of Al-Zn-Mg-Cu alloy [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(4): 803-809. [17]Bartges C W. Changes in solid solution composition as a function of artificial ageing time for aluminium alloy 7075 [J]. Journal of Materials Science Letters, 1994, 13(11): 776-778. [18]Vasudévan A K, Doherty R D. Grain boundary ductile fracture in precipitation hardened aluminum alloys [J]. Acta Metallurgica, 1987, 35(6): 1193-1219. [19]Mineo A, Tadashi M, Yoshikazu O, et al. Effect of copper content on bendability of Al-Mg-Si alloy sheets [J]. Journal of Japan Institute of Light Metals, 2006, 56(7): 371-375. [20]Reyes A, Eriksson M, Lademo O G, et al. Assessment of yield and fracture criteria using shear and bending tests [J]. Materials and Design, 2009, 30(3): 596-608. [21]Lievers W B, Pilkey A K, Lloyd D J. The influence of iron content on the bendability of AA6111 sheet [J]. Materials Science and Engineering A, 2003, 361(1): 312-320. [22]Li J F, Peng Z W, Li C X, et al. Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 755-762. [23]Vikas P, Sudhakar I, Dilkush, et al. Aging behaviour of hot deformed AA7075 aluminium alloy [J]. Materials Today: Proceedings, 2020, 41: 1013-1017. [24]Ibrahim M F, Samuel A M, Samuel F H. A preliminary study on optimizing the heat treatment of high strength Al-Cu-Mg-Zn alloys [J]. Materials and Design, 2014, 57: 342-350. [25]Meng X, Zhang D, Zhang W, et al. Influence of solution treatment on microstructures and mechanical properties of a naturally-aged Al-27Zn-1.5Mg-1.2Cu-0.08Zr aluminum alloy [J]. Materials Science and Engineering A, 2021, 802: 140623. [26]殷 剑, 金 康, 黎 诚. 时效处理对7022铝合金组织与性能的影响[J]. 材料热处理学报, 2022, 43(2): 49-57. Yin Jian, Jin Kang, Li Cheng. Effect of aging treatment on microstructure and properties of 7022 aluminum alloy [J]. Transactions of Materials and Heat Treatment, 2022, 43(2): 49-57. [27]Liu C Y, Ma M Z, Liu R P, et al. Evaluation of microstructure and mechanical properties of Al-Zn alloy during rolling [J]. Materials Science and Engineering A, 2016, 654: 436-441. [28]Chang Y L, Hung F Y, Lui T S. Enhancement of the Young's modulus through infrared heat treatment: A study of the microstructure and the mass effect of real body 6082 aluminum forgings [J]. Metals, 2018, 8(4): 8040239. [29]Xie C Y, Schaller R, Jaquerod C. High damping capacity after precipitation in some commercial aluminum alloys [J]. Materials Science and Engineering A, 1998, 252(1): 78-84. [30]Meng X, Zhang D, Zhang W, et al. Microstructure and mechanical properties of a high-Zn aluminum alloy prepared by melt spinning and extrusion [J]. Journal of Alloys and Compounds, 2020, 819: 152990. [31]Menapace C, Bernard F, Lusa M, et al. Effect of a dual-rate ageing treatment on the tensile properties of a commercial 6060 Al alloy [J]. Materials Science and Engineering A, 2021, 819: 141468. [32]殷 剑, 黎 诚, 金 康, 等. 铝合金汽车前下摆臂成形工艺的有限元模拟与优化[J]. 锻压技术, 2021, 46(11): 74-82. Yin Jian, Li Cheng, Jin Kang, et al. Finite element simulation and optimization of the forming process of the aluminum alloy front lower sway arm of automobile [J]. Forging and Stamping Technology, 2021, 46(11): 74-82. |