[1]徐 磊. 高温回火对4330V钢组织及力学性能的影响分析[J]. 石化技术, 2020, 27(10): 46-47. Xu Lei. Effort of high temperature tempering on microstructure and mechanical properties of 4330V steel[J]. Petrochemical Technology, 2020, 27(10): 46-47. [2]孙 荣, 赵钧羡, 段隆臣, 等. 高温回火对4330V钢组织及力学性能的影响[J]. 热加工工艺, 2016, 45(12): 187-189. Sun Rong, Zhao Junxian, Duan Longchen, et al. Influence of high temperature tempering on microstructure and mechanical properties of 4330V steel[J]. Hot Working Technology, 2016, 45(12): 187-189. [3]Bitterlin M, Shahriari D, Lapierre-Boire L P, et al. Hot deformation behavior of a nickel-modified AISI 4330 steel[J]. ISIJ International, 2018, 58(9): 1711-1720. [4]Mangonon P L. Relative hardenabilities and interaction effects of Mo and V in 4330 alloy steel[J]. Metallurgical and Materials Transaction A, 1982, 13(2): 319-320. [5]卢银德. 大型锻件的热处理工艺[J]. 金属热处理, 2004, 29(4): 47-49. Lu Yinde. Heat treatment of large-size forged parts[J]. Heat Treatment of Metals, 2004, 29(4): 47-49. [6]左永平, 林天泉, 郑 益, 等. 大型锻件采用水溶性淬火介质淬火的工艺控制[J]. 大型铸锻件, 2010(1): 20-24. Zuo Yongping, Lin Tianquan, Zheng Yi, et al. The quenching process control for large forging using ploymer quenchant[J]. Heavy Casting and Forging, 2010(1): 20-24. [7]李 钊, 赵 进, 赵莉萍, 等. 终冷温度对中碳合金钢组织和性能的影响[J]. 包钢科技, 2019, 45(5): 45-48. Li Zhao, Zhao Jin, Zhao Liping, et al. Effect of finish cooling temperature on microstructure and properties of medium carbon alloy steel[J]. Science and Technology of Baotou Steel, 2019, 45(5): 45-48. [8]Qiao Z X, Liu Y C, Yu L M, et al. Formation mechanism of granular bainite in a 30CrNi3MoV steel[J]. Journal of Alloy and Compounds, 2012, 475(1/2): 560-564. [9]Qiao Z X, Liu Y C, Ning B Q, et al. Bainitic transformation behavior of ultra-high strength 30CrNi3MoV steel after experiencing small deformation in the nonrecrystallization austenite region[J]. Journal of Materials Research, 2013, 28(20): 2844-2851. [10]Tomita Y. Mechanical properties of modified heat treated silicon modified 4330 steel[J]. Materials Science and Technology, 1995, 11(3): 259-263. [11]刘贤强, 卜恒勇, 李 其, 等. A668钢CCT曲线的预测和验证[J]. 金属热处理, 2020, 45(10): 154-160. Liu Xianqiang, Bu Hengyong, Li Qi, et al. Prediction and verification of CCT curves of A668 steel[J]. Heat Treatment of Metals, 2020, 45(10): 154-160. [12]马浩冉, 刘洪波, 刘 崇, 等. EH460级船板钢的动态CCT曲线与组织演变[J]. 金属热处理, 2020, 45(10): 160-163. Ma Haoran, Liu Hongbo, Liu Chong, et al. Dynamic CCT curves and microstructure evolution of EH460 ship plate steel[J]. Heat Treatment of Metals, 2020, 45(10): 160-163. [13]郭海霞, 黄安琪. 合金钢中复相组织的彩色金相浸蚀方法[J]. 理化检测(物理分册), 2019, 55(8): 547-549. Guo Haixia, Huang Anqi. Color metallographic etching method of multiphase microstructure in alloy steel[J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 2019, 55(8): 547-549. [14]Ye J S, Chang H B, Xu Z Y. Modeling for formation of proeutectoid ferrite in steel during continuous cooling[J]. Journal of Iron and Steel Research International, 2004, 11(6): 33-36. [15]Yin J Q, Hillert M, Borgenstam A. Morphology of proeutectoid ferrite[J]. Metallurgical and Materials Transactions A, 2017, 48(3): 1425-1443. [16]Militzer M, Pandi R, Hawbolt E B. Ferrite nucleation and growth during continuous cooling[J]. Metallurgical and Materials Transactions A, 1996, 27(6): 1547-1556. [17]刘宗昌, 计云萍. 贝氏体相变新理论及研究历程[J]. 热处理, 2018, 33(5): 7-14. Liu Zongchang, Ji Yunping. New theory and progress in study on bainite phase transformation[J]. Heat Treatment, 2018, 33(5): 7-14. [18]Bramfitt B L, Speer J G. A perspective on the morphology of bainite[J]. Metallurgical Transactions A, 1990, 21(3): 817-829. [19]Trzaska J. Empirical formulas for the calculations of the hardness of steels cooled from the austenitizing temperature[J]. Archives of Metallurgy and Materials, 2016, 61(3): 1297-1302. [20]Lee S J, Lee Y K. Effect of austenite grain size on martensitic transformation of a low alloy steel[J]. Materials Science Forum, 2005, 475: 3169-3172. [21]Contreras A, Lopez A, Gutierrez E J, et al. An approach for the design of multiphase advanced high-strength steels based on the behavior of CCT diagrams simulated from the intercritical temperature range[J]. Materials Science and Engineering A, 2020, 772: 138708. [22]Pickering E J, Collins J, Stark A, et al. In situ observations of continuous cooling transformations in low alloy steels[J]. Materials Characterization, 2020, 165: 110355. [23]An F C, Zhao S X, Xue X K, et al. Incompleteness of bainite transformation in quenched and tempered steel under continuous cooling conditions[J]. Journal of Materials Research and Technology, 2020, 9(4): 8985-8996. [24]Qiao Z X, Liu Y C, Yu L M, et al. Incompleted bainitic transformation characteristics in an isochronally annealed 30CrNi3MoV steel[J]. Journal of Alloys and Compounds, 2009, 478(1): 334-340. [25]Dobrzański L A, Trzasak J. Application of neural networks for prediction of hardness and volume fractions of structural components in constructional steels cooled from the austenitizing temperature[J]. Materials Science Forum, 2003, 437(2): 359-362. [26]Ebrahimian A, Banadkouki S S G. Mutual mechanical effects of ferrite and martensite in a low alloy ferrite-martensite dual phase steel[J]. Journal of Alloys and Compounds, 2017, 708(25): 43-54. [27]Trzaska J. Calculation of the steel hardness after continuous cooling[J]. Archives of Materials Science and Engineering, 2013, 61(2): 87-92. |