[1]Chen P, Qiu B W, Wu J M, et al. A comparative study of in-pile behaviors of FeCrAl cladding under normal and accident conditions with updated FROBA-ATF code[J]. Nuclear Engineering and Design, 2021, 371: 110889. [2]Sakamoto K, Miura Y, Ukai S, et al. Development of accident tolerant FeCrAl-ODS fuel cladding for BWRs in Japan[J]. Journal of Nuclear Materials, 2021, 557: 153276. [3]Ze X, Liu Y L, Wang B. Effect of Weibull parameters and crack distribution on the failure probability of multi-layered SiC cladding[J]. Journal of Nuclear Materials, 2021, 557: 153215. [4]Yang K, Kardoulaki E, Zhao D, et al. Uranium nitride (UN) pellets with controllable microstructure and phase-fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties[J]. Journal of Nuclear Materials, 2021, 557: 153272. [5]Liu H Y, Feng Y J, Yao Y R, et al. Effect of the 345 ℃ and 16.5 MPa autoclave corrosion on the oxidation behavior of Cr-coated zirconium claddings in the high-temperature steam[J]. Corrosion Science, 2021, 189: 109608. [6]Jiang J S, Du M Y, Pan Z Y, et al. Effects of oxidation and inter-diffusion on the fracture mechanisms of Cr-coated Zry-4 alloys: An in situ three-point bending study[J]. Materials and Design, 2021, 212: 110168. [7]Shin D, Kim S J. Intrinsic effects of Cr-layered accident-tolerant fuel cladding surface on reflood heat transfer[J]. International Journal of Heat and Mass Transfer, 2022, 186: 122512. [8]Wei T G, Zhang R Q, Yang H Y, et al. Microstructure, corrosion resistance and oxidation behavior of Cr-coatings on Zircaloy-4 prepared by vacuum arc plasma deposition[J]. Corrosion Science, 2019, 158: 108077. [9]曾小安, 邱长军, 张 文, 等. 占空比对多弧离子镀纯Cr涂层表面形貌的影响[J]. 金属热处理, 2017, 42(4): 172-174. Zeng Xiaoan, Qiu Changjun, Zhang Wen, et al. Influence of duty cycle on surface morphology of pure Cr coatings deposited by multi-arc ion plating[J]. Heat Treatment of Metals, 2017, 42(4): 172-174. [10]Tang C, Groe M, Ulrich S, et al. High-temperature oxidation and hydrothermal corrosion of textured Cr2AlC-based coatings on zirconium alloy fuel cladding[J]. Surface and Coatings Technology, 2021, 419: 127263. [11]李 涛, 樊湘芳, 胡汝骞, 等. 锆合金表面渗氮层对TiAlN涂层结合力的影响[J]. 金属热处理, 2018, 43(5): 120-123. Li Tao, Fan Xiangfang, Hu Ruqian, et al. Effect of nitride layer of zirconium alloy on binding of TiAlN coating[J]. Heat Treatment of Metals, 2018, 43(5): 120-123. [12]Xiao W W, Deng H, Zou S L, et al. Effect of roughness of substrate and sputtering power on the properties of TiN coatings deposited by magnetron sputtering for ATF[J]. Journal of Nuclear Materials, 2018, 509: 542-549. [13]Li Z, Liu C H, Chen Q S, et al. Microstructure, high-temperature corrosion and steam oxidation properties of Cr/CrN multilayer coatings prepared by magnetron sputtering[J]. Corrosion Science, 2021, 191: 109755. [14]Liu J K, Hao Z, Cui Z X, et al. Investigation of the oxidation mechanisms of superlattice Cr-CrN/TiSiN-Cr multilayer coatings on Zircaloy substrates under high-temperature steam atmospheres[J]. Corrosion Science, 2021, 192: 109782. [15]Chen Q S, Liu C H, Zhang R Q, et al. Microstructure and high-temperature steam oxidation properties of thick Cr coatings prepared by magnetron sputtering for accident tolerant fuel claddings: the role of bias in the deposition process[J]. Corrosion Science, 2020, 165: 108378. [16]Huang J H, Zou S L, Xiao W W, et al. Microstructural evolution of Cr-coated Zr-4 alloy prepared by multi-arc ion plating during high temperature oxidation[J]. Journal of Nuclear Materials, 2022, 562: 153616. [17]Hazan J, Gauthier A, Pouillier E, et al. Semi-integral LOCA test of cold-spray chromium coated zircaloy-4 accident tolerant fuel cladding[J]. Journal of Nuclear Materials, 2021, 550: 152940. [18]Kim H G, Yang J H, Kim W J, et al. Development status of accident tolerant fuel for light water reactors in Korea[J]. Nuclear Engineering and Technology, 2016, 48(1): 1-15. [19]Fazi A, Stiller K, Andren H O, et al. Cold sprayed Cr-coating on optimized ZIRLOTM claddings: The Cr/Zr interface and its microstructural and chemical evolution after autoclave corrosion testing[J]. Journal of Nuclear Materials, 2022, 560: 153505. [20]Han X, Chen C, Tan Y, et al. A systematic study of the oxidation behavior of Cr coatings on Zry4 substrates in high temperature steam environment[J]. Corrosion Science, 2020, 174: 108826. [21]Liu J K, Cui Z X, Hao Z, et al. Steam oxidation of Cr-coated Sn-containing zircaloy solid rod at 1000 ℃[J]. Corrosion Science, 2021, 190: 109682. [22]Chen Q S, Xiang Y, Li Z, et al. Microstructure evolution and adhesion properties of thick Cr coatings under different thermal shock temperatures[J]. Journal of Nuclear Materials, 2021, 417: 127224. [23]Okamoto H. Supplemental literature review of binary phase diagrams: B-Fe, Cr-Zr, Fe-Np, Fe-W, Fe-Zn, Ge-Ni, La-Sn, La-Ti, La-Zr, Li-Sn, Mn-S, and Nb-Re[J]. Journal of Phase Equilibria and Diffusion, 2016, 37: 621-634. |