[1]白 刚, 刘 锋, 张银生, 等. 镁合金表面处理工艺研究[J]. 现代涂料与涂装, 2020, 23(6): 14-17. Bai Gang, Liu Feng, Zhang Yinsheng, et al. Research on magnesium alloy surface treatment progress[J]. Modern Paint and Finishing, 2020, 23(6): 14-17. [2]王悦存, 周 凡, 葛延峰, 等. 镁合金表面改性与防护研究进展[J]. 中国材料进展, 2020, 39(2): 100-112. Wang Yuecun, Zhou Fan, Ge Yanfeng, et al. Rencent progress on surface modification and protection of magnesium alloys[J]. Materials China, 2020, 39(2): 100-112. [3]弓晓园, 吴志生, 吴 磊, 等. AZ31镁合金盐浴渗铝改善耐蚀性机制分析[J]. 焊接学报, 2017, 38(1): 99-102. Gong Xiaoyuan, Wu Zhisheng, Wu Lei, et al. Research on properties of diffusion aluminizing layer on AZ31B magnesium alloy[J]. Transactions of the China Welding Institution, 2017, 38(1): 99-102. [4]李小丽, 罗 君, 翟丽平, 等. 镁合金耐蚀性的研究进展[J]. 贵州农机化, 2019(4): 40-43. [5]赵 旭, 黄维刚, 郑天群, 等. 镁合金AZ31的磨损性能研究[J]. 材料工程, 2008(5): 1-3. Zhao Xu, Huang Weigang, Zheng Tianqun, et al. Study on wear characteristics of magnesium alloy AZ31[J]. Journal of Materials Engineering, 2008(5): 1-3. [6]艾小玲, 刘 波, 刘生发. AZ91D镁合金表面熔盐热扩渗试验[J]. 特种铸造及有色合金, 2015, 35(5): 529-532. Ai Xiaoling, Liu Bo, Liu Shengfa. Study on the molten salt thermal diffusion of AZ91D magnesium alloy[J]. Special Casting and Nonferrous Alloys, 2015, 35(5): 529-532. [7]程小敏, 张修庆, 陈小娜. AZ91D镁合金表面热扩渗膜层的结构及性能研究[J]. 热加工工艺, 2016, 45(4): 165-167. Cheng Xiaomin, Zhang Xiuqing, Chen Xiaona. Investigation on microstructures and properties of AZ91D Mg alloy surface thermal diffusion layer[J]. Hot Working Technology, 2016, 45(4): 165-167. [8]Li G J, Peng Q, Wang J, et al. Surface microstructure of 316L austenitic stainless steel by the salt bath nitrocarburizing and post-oxidation process known as QPQ[J]. Surface and Coatings Technology, 2007, 202(13): 2865-2870. [9]李冰月. 6061铝合金低温盐浴碳氮共渗工艺及摩擦磨损性能研究[D]. 无锡: 江南大学, 2018. Li Bingyue. Study on the friction and wear properties of 6061 alloy with low-temperature salt bath treatment [D]. Wuxi: Jiangnan University, 2018. [10]李延辉, 刘金水, 周惦武, 等. H13模具钢低温盐浴氮碳钒共渗工艺研究[J]. 热加工工艺, 2006, 35(10): 37-39. Li Yanhui, Liu Jinshui, Zhou Dianwu, et al. Study on vanadium-nitrocarburizing in low temperature salt-bath for die steel H13[J]. Hot Working Technology, 2006, 35(10): 37-39. [11]倪宏昕, 单丽云, 王 超, 等. 预先氮碳共渗对渗铬和渗钒的影响[J]. 金属热处理, 1999, 24(6): 15-17. Ni Hongxin, Shan Liyun, Wang Chao, et al. Influence of pre-nitrocarburizing on chromizing and vanadizing[J]. Heat Treatment of Metals, 1999, 24(6): 15-17. [12]郭林龙, 赵作福, 单东栋, 等. Cr12MoV钢渗钒工艺的研究进展[J]. 辽宁工业大学学报, 2017, 37(3): 165-168. Guo Linlong, Zhao Zuofu, Shan Dongdong, et al. Research progress of vanadizing process of Cr12MoV steel[J]. Journal of Liaoning University of Technology, 2017, 37(3): 165-168. [13]周联谱, 朱春东, 郭 炼, 等. Cr12Mo1V1冲头TD盐浴渗钒后热处理工艺研究[J]. 热加工工艺, 2021, 50(8): 105-108. Zhou Lianpu, Zhu Chundong, Guo Lian, et al. Research on heat treatment technology of Cr12Mo1V1 punch TD salt bath after vanadium infiltration[J]. Hot Working Technology, 2021, 50(8): 105-108.[14]雷丰荣, 李 晖. 40Cr钢TD盐浴渗钒制备VC渗层的组织形貌[J]. 金属热处理, 2020, 45(7): 177-182. Lei Fengrong, Li Hui. Microstructure of VC layer prepared by TD salt bath vanadizing on 40Cr steel surface[J]. Heat Treatment of Metals, 2020, 45(7): 177-182. [15]杨浩鹏, 吴晓春, 秦 芳, 等. SDC99钢盐浴TD法制备VC覆层形成机理的研究[J]. 金属学报, 2013, 49(2): 146-152. Yang Haopeng, Wu Xiaochun, Qin Fang, et al. Study on growth mechanism of salt bath vanadizing coating by TD process on SDC99 steel[J]. Acta Metallurgica Sinica, 2013, 49(2): 146-152. [16]Jin G, Xu F F, Hu X X, et al. Superior compound coatings prepared by low-temperature vanadium-nitrocarburizing duplex treatment[J]. Rare Metals, 2019: 1-8. [17]陈维平, 陈宛德, 詹美燕, 等. 轧制温度和变形量对AZ31镁合金板材组织和硬度的影响[J]. 特种铸造及有色合金, 2007, 27(5): 338-341. Chen Weiping, Chen Wande, Zhan Meiyan, et al. Effects of rolling temperature and strain on microstructure and hardness of AZ31 magnesium sheets[J]. Special Casting and Nonferrous Alloys, 2007, 27(5): 338-341. [18]杨 勇, 吴 伟, 刘 浏. 五氧化二钒制备碳氮化钒的试验研究[J]. 钢铁钒钛, 2018, 39(2): 25-31. Yang Yong, Wu Wei, Liu Liu. Experimental study on preparation of vanadium carbonitride by vanadium pentoxide[J]. Iron Steel Vanadium Titanium, 2018, 39(2): 25-31. [19]Yu Y X, He B L, Shi J P. The effect of QPQ salt-bath nitriding on microstructure and wear resistance of 4Cr5MoSiV1 steel[J]. Advanced Materials Research, 2010, 154-155: 57-60. [20]Cai W, Meng F, Gao X, et al. Effect of QPQ nitriding time on wear and corrosion behavior of 45 carbon steel[J]. Applied Surface Science, 2012, 261: 411-414. |