[1]Firrao D, Matteis P, Scavino G, et al. Relationships between tensile and fracture mechanics properties and fatigue properties of large plastic mould steel blocks[J]. Materials Science and Engineering: A, 2007, 468-470(11/12): 193-200. [2]Luo Y, Wu X C, Wang H B, et al. A comparative study on non-quenched and quenched prehardened steel for large section plastic mould[J]. Journal of Materials Processing Technology, 2009, 209(14): 5437-5442. [3]Luo Y, Wu X C, Min Y G, et al. Development of non-quenched prehardened steel for large section plastic mould[J]. Journal of Iron and Steel Research International, 2009, 16(2): 61-67. [4]张 铮, 吴晓春. SDP2新型贝氏体塑料模具钢连续冷却相变与力学性能研究[J]. 热加工工艺, 2019, 48(10): 241-243. Zhang Zheng, Wu Xiaochun. Study on continuous cooling transformation and mechanical properties of SDP2 new bainite plastic die steel[J]. Hot Working Technology, 2019, 48(10): 241-243. [5]张 铮, 李 娜. 贝氏体塑料模具钢SDP1热压缩流动应力及晶粒度的研究[J]. 热加工工艺, 2020, 49(15): 64-67. Zhang Zheng, Li Na. Study on flow stress and grain size of bainitic plastic die steel SDP1 during hot compression[J]. Hot Working Technology, 2020, 49(15): 64-67. [6]洪 斌, 刘雅政, 周乐育. 变形及冷速对预硬化塑料模具钢P20组织与性能的影响[J]. 金属热处理, 2011, 36(5): 103-106. Hong Bin, Liu Yazheng, Zhou Leyu. Effect of deformation and cooling rate on microstructure and mechanical properties of P20 pre-hardened plastic mould steel[J]. Heat Treatment of Metals, 2011, 36(5): 103-106. [7]Zhang R Y, Boyd J D. Bainite transformation in deformed austenite[J]. Metallurgical and Materials Transactions A, 2010, 41(6): 1448-1459. [8]刘东升, 王国栋, 刘相华, 等. P20钢变形奥氏体连续冷却时的相变规律[J]. 金属学报, 1998, 34(3): 271-277. Liu Dongsheng, Wang Guodong, Liu Xianghua, et al. Continuous cooling transformation behavior of deformed austenite for plastic die steel P20[J]. Acta Metallurgica Sinica, 1998, 34(3): 271-277. [9]Chen S P, Rana R, Xiao B, et al. The effects of hot deformation of austenite on the bainite transformation in a Fe-C-Mn-Si-Cr steel[J]. Materials Science Forum, 2018, 941: 486-491. [10]Sourmail T, Smanio V. Optimisation of the mechanical properties of air cooled bainitic steel components through tailoring of the transformation kinetics[J]. Materials Science and Engineering: A, 2013, 582: 257-261. [11]Gomez G, Pérez T, Bhadeshia H K D H. Air cooled bainitic steels for strong, seamless pipes Part 1-Alloy design, kinetics and microstructure[J]. Materials Science and Technology, 2009, 25(12): 1502-1507. [12]WilliamLemos B, Jérémy E, Heiner M, et al. In situ investigation of the bainitic transformation from deformed austenite during continuous cooling in a low carbon Mn-Si-Cr-Mo steel[J]. Metallurgical and Materials Transactions A, 2020, 51: 3627-3637. [13]Ariza E A, Nishikawa A S, Goldenstein H, et al. Characterization and methodology for calculating the mechanical properties of a TRIP-steel submitted to hot stamping and quenching and partitioning (Q&P)[J]. Materials Science and Engineering: A, 2016, 671: 54-69. [14]Xie C S, Liu Z D, He X K, et al. Effect of martensite-austenite constituents on impact toughness of pre-tempered MnNiMo bainitic steel[J]. Materials Characterization, 2020, 161: 1-14. [15]Khlestov V M, Konopleva E V, Mcqueen H J. Kinetics of austenite transformation during thermomechanical processes[J]. Canadian Metallurgical Quarterly, 1998, 37(2): 75-89. |