[1]Richard J Parker, Robert S Hodder. Effect of double vacuum melting and retained austenite on rolling-element fatigue life of AMS 5749 bearing steel[J]. NASA Technical, 1977, 504(4): 1-16. [2]Jon L Dossett, George E Totten. ASM Handbook, Volume 4D: Heat Treating of Irons and Steels[M]. Almere: ASM International, 2014. [3]王清秀. 一种不锈的高速钢-BG42[J]. 今日科技, 1972(12): 44-45. [4]Dennis W Hetznera, William V Geertruydenb. Crystallography and metallography of carbides in high alloy steels[J]. Materials Characterization, 2008, 59: 825-841. [5]Sehgal Rakesh, Jagota Vishal, Sharma K Rajesh. Impact of austenitizing temperature on the wear behaviour of AISI H13 steel[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235(3): 564-574. [6]Bahrami A, Anijdan S, Golozar M A, et al. Effects of conventional heat treatment on wear resistance of AISI H13 tool steel[J]. Wear, 2005, 258(5/6): 846-851. [7]Agboola O, Ikubanni P, Adeleke A, et al. Optimization of heat treatment parameters of medium carbon steel quenched in different media using Taguchi method and grey relational analysis[J]. Heliyon, 2020, 6(7): 1-10. [8]谢章龙, 陈 锋, 胡其龙, 等. 奥氏体化及回火温度对E550级低温钢组织和性能的影响[J]. 金属热处理, 2021, 46(1): 65-70. Xie Zhanglong, Chen Feng, Hu Qilong, et al. Influence of austenitizing and tempering temperature on microstructure and properties of E550 low-temperature steel[J]. Heat Treatment of Metals, 2021, 46(1): 65-70. [9]周丽娜, 唐光泽, 马欣新, 等. 奥氏体化温度对M50钢组织转变的影响[J]. 材料热处理学报, 2016, 37(7): 89-94. Zhou Lina, Tang Guangze, Ma Xinxin, et al. Effect of austenitizing temperature on microstructure transformation of M50 steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(7): 89-94. [10]徐祖耀. 马氏体相变与马氏体[M]. 北京: 科学出版社, 1999. [11]崔 崑. 钢的成分、组织与性能(第三分册: 合金结构钢)[M]. 北京: 科学出版社, 2019. [12]Klecka M A, Subhash G, Arakere N K. Microstructure-property relationships in M50-NiL and P675 case-hardened bearing steels[J]. Tribology Transactions, 2013, 56(6): 1046-1059. [13]Trevisiol C, Jourani A, Bouvier S. Effect of hardness, microstructure, normal load and abrasive size on friction and on wear behaviour of 35NCD16 steel[J]. Wear, 2017, 388: 101-111. [14]Das R K, Kumar R, Sarkar G, et al. Comparative machining performance of hardened AISI 4340 steel under dry and minimum quantity lubrication environments[J]. Materials Today: Proceedings, 2018, 5(11): 24898-24906. [15]尹龙承. 14Cr14Co13Mo4钢Ni缓冲层法渗碳及热处理工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [16]郭 军, 杨卯生, 卢德宏, 等. Cr4Mo4V轴承钢旋转弯曲疲劳寿命及疲劳裂纹萌生机理[J]. 材料工程, 2019, 47(7): 134-143. Guo Jun, Yang Maosheng, Lu Dehong, et al. Rotation bending fatigue life and fatigue crack initiation mechanism of Cr4Mo4V bearing steel[J]. Journal of Materials Engineering, 2019, 47(7): 134-143. [17]崔 崑. 钢的成分、组织与性能(第一分册: 合金钢基础)[M]. 北京: 科学出版社, 2019. [18]Liu Shilong, Hu Bin, Li Wei, et al. Refined heterogeneous phase unit enhances ductility in quenched ultra-high strength steels[J]. Scripta Materialia, 2021, 194: 1-5. [19]Pan Haijun, Jiang Peng, Zhang Yi, et al. Microstructure evolution and enhanced mechanical properties of a Nb-Mo microalloyed medium Mn alloy fabricated by a novel cyclic quenching treatment[J]. Materials Science and Engineering A, 2020, 797: 1-7. [20]杨少朋, 尉文超, 胡芳忠, 等. 低碳齿轮钢18CrNiMo7-6奥氏体晶粒度长大规律[J]. 材料导报, 2021, 35(8): 8179-8183. Yang Shaopeng, Yu Wenchao, Hu Fangzhong, et al. The austenite grain growth behavior of low carbon gear steel 18CrNiMo7-6[J]. Materials Reports, 2021, 35(8): 8179-8183. [21]纪显彬, 李照国, 魏海霞, 等. 淬火温度和氮含量对马氏体不锈钢组织和性能的影响[J]. 金属热处理, 2021, 46(3): 130-134. Ji Xianbin, Li Zhaoguo, Wei Haixia, et al. Effects of quenching temperature and nitrogen content on microstructure and properties of martensitic stainless steel[J]. Heat Treatment of Metals, 2021, 46(3): 130-134. |