[1]徐思成, 李增权. Fe-Cr基激光熔覆层的耐腐蚀性能[J]. 热加工工艺, 2013, 42(10): 160-162. Xu Sicheng, Li Zengquan. Corrosion resistance of Fe-Cr based laser cladding layer[J]. Hot Working Technology, 2013, 42(10): 160-162. [2]贵永亮, 张 良, 王振磊, 等. Fe-Cr-Si系合金的研究现状与展望[J]. 材料导报, 2013, 27(S2): 343-345. Gui Yongliang, Zhang Liang, Wang Zhenlei, et al. Research progress and development of Fe-Cr-Si alloy[J]. Materials Review, 2013, 27(S2): 343-345. [3]刘 威, 邵兴明, 季勇华, 等. Fe-Cr-Al电热合金的高温氧化行为[J]. 金属热处理, 2021, 46(4): 60-65. Liu Wei, Shao Xingming, Ji Yonghua, et al. High-temperature oxidation behavior of Fe-Cr-Al electrothermal alloy[J]. Heat Treatment of Metals, 2021, 46(4): 60-65. [4]许旭鹏, 刘守平, 韩校宇, 等. Fe-Cr-Al-Si铁素体耐热钢组织结构与抗氧化性[J]. 材料热处理学报, 2017, 38(1): 106-111. Xu Xupeng, Liu Shouping, Han Xiaoyu, et al. Microstructure and antioxidation mechanism of an Fe-Cr-Al-Si heat resistant steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(1): 106-111. [5]Rs A, Yaf A, Kbr B, et al. High-temperature atmospheric corrosion of Fe-Cr-Si alloys studied by Mssbauer spectroscopy[J]. Corrosion, 2018, 74(10): 1083-1092. [6]Moon J, Kim S, Park W D, et al. Initial oxidation behavior of Fe-Cr-Si alloys in 1200 ℃ steam[J]. Journal of Nuclear Materials, 2019, 513: 297-308. [7]Saminathan R, Fageehi Y A, Ramalingam K B, et al. Investigation on the effect of Si addition to the high temperature cyclic oxidation behaviour of β-NiAlDy alloy used in advanced jet engine applications[J]. Materials Today: Proceedings, 2021, 42(2): 416-422. [8]Leong A, Yang Q, Mcalpine S W, et al. Oxidation behavior of Fe-Cr-2Si alloys in high temperature steam[J]. Corrosion Science, 2020, 179(1-3): 109-114. [9]郝文俊, 孙荣禄, 牛 伟, 等. 激光熔覆CoCrFeNiSix高熵合金涂层的组织及性能[J]. 表面技术, 2021, 50(8): 87-94. Hao Wenjun, Sun Ronglu, Niu Wei, et al. Microstructure and properties of laser cladding CoCrFeNiSix high-entropy alloy coating[J]. Surface Technology, 2021, 50(8): 87-94. [10]郭伟杰, 张继祥, 李建树, 等. Si元素对Ni-16Mo-7Cr-4Fe合金700 ℃恒温氧化性能的影响[J]. 稀有金属, 2019, 43(5): 507-512. Guo Weijie, Zhang Jixiang, Li Jianshu, et al. Oxidation properties of Ni-16Mo-7Cr-4Fe superalloy with different Si contents at 700 ℃[J]. Chinese Journal of Rare Metals, 2019, 43(5): 507-512. [11]马 瑞, 谢 泉, 万明攀, 等. 机械合金化制备Fe3Si金属间化合物的研究进展[J]. 热加工工艺, 2016, 45(6): 5-8. Ma Rui, Xie Quan, Wan Mingpan, et al. Research progress in Fe3Si intermetallic compounds prepared by mechanical alloying[J]. Hot Working Technology, 2016, 45(6): 5-8. [12]熊 伟, 秦晓英, 王 莉. 金属间化合物Mg2Si的研究进展[J]. 材料导报, 2005, 19(6): 4-7. Xiong Wei, Qin Xiaoying, Wang Li. Oxidation resistance at high temperature of Fe3Si intermetallic[J]. Materials Review, 2005, 19(6): 4-7. [13]Tang Changbin, Wen Furong, Chen Hongxia, et al. Corrosion characteristics of Fe3Si intermetallic coatings prepared by molten salt infiltration in sulfuric acid solution[J]. Journal of Alloys and Compounds, 2018, 778: 972-981. [14]周 琦, 贾建刚, 赵红顺, 等. Fe3Si金属间化合物高温抗氧化性能研究[J]. 航空材料学报, 2011, 31(2): 72-78. Zhou Qi, Jia Jiangang, Zhao Hongshun, et al. Oxidation resistance at high temperature of Fe3Si intermetallic[J]. Journal of Aeronautical Materials, 2011, 31(2): 72-78. [15]马 瑞, 李克用, 周 娟, 等. Ni对Fe3Si化合物硬度影响的微观组织结构和电子结构研究[J]. 原子与分子物理学报, 2017, 34(4): 793-798. Ma Rui, Li Keyong, Zhou Juan, et al. Study of microstructures and electronic structures for effect of Ni concentration on Fe3Si compounds[J]. Journal of Atomic and Molecular Physics, 2017, 34(4): 793-798. [16]Zhou Shengfeng, Zhao Yu, Wang Xiaojian, et al. Enhanced corrosion resistance of Ti-5wt% TiN composite compared to commercial pure Ti produced by selective laser melting in HCl solution[J]. Journal of Alloys and Compounds, 2020, 820: 153422. [17]Aye K K, Nguyen T D, Zhang J, et al. Effect of silicon on corrosion of Fe-20Cr and Fe-20Cr-20Ni alloys in wet CO2 with and without HCl at 650 ℃[J]. Corrosion Science, 2020, 179: 109096. [18]Chen Hao, Ye Yuwei, Wang Chunting, et al. Understanding the corrosion and tribological behaviors of CrSiN coatings with various Si contents in HCl solution[J]. Tribology International, 2019, 131: 530-540. [19]Wang Zhu, Zhang Lei, Zhang Ziru, et al. Combined effect of pH and H2S on the structure of passive film formed on type 316L stainless steel[J]. Applied Surface Science, 2018, 458: 686-699. |