[1]尤中源, 刘文言, 陈 荣, 等. α相含量对新型亚稳β钛合金动态力学性能的影响[J]. 稀有金属, 2021, 45(7): 891-896. You Zhongyuan, Liu Wenyan, Chen Rong, et al. Dynamic mechanical properties of new type of metastable titanium alloy with different α phase content[J]. Chinese Journal of Rare Metals, 2021, 45(7): 891-896. [2]Huang R T, Huang W L, Huang R H, et al. Effects of microstructures on the notch tensile fracture feature of heat-treated Ti-6Al-6V-2Sn alloy[J]. Materials Science and Engineering A, 2014, 595: 297-305. [3]朱宝辉, 曾卫东, 陈 林, 等. 高温形变热处理制备Ti-6Al-6V-2Sn合金棒材的组织及性能[J]. 稀有金属, 2018, 42(11): 1143-1148. Zhu Baohui, Zeng Weidong, Chen Lin, et al. Microstructure and mechanical properties of Ti-6Al-6V-2Sn alloy bars processed by high temperature thermomechanical treatment[J]. Chinese Journal of Rare Metals, 2018, 42(11): 1143-1148. [4]许爱军, 万海锋, 梁春祖, 等. 低温钛合金材料应用现状及发展趋势[J]. 精密成形工程, 2020, 6(12): 145-156. Xu Aijun, Wan Haifeng, Liang Chunzu, et al. Application status and development trend of cryogenic titanium alloy[J]. Journal of Netshape Forming Engineering, 2020, 6(12): 145-156. [5]秦桂红, 严 彪, 计 波, 等. 锻造工艺和时效处理对TC10钛合金组织和性能的影响[J]. 钛工业进展, 2018, 35(2): 39-41. Qin Guihong, Yan Biao, Ji Bo, et al. Effect of deformation and aging on microstructures and mechanical properties of TC10 titanium alloy[J]. Titanium Industry Progress, 2018, 35(2): 39-41. [6]朱宝辉, 曾卫东, 陈 林, 等. 固溶时效工艺对Ti-6Al-6V-2Sn钛合金棒材组织及性能的影响[J]. 中国有色金属学报, 2018, 24(4): 677-684. Zhu Baohui, Zeng Weidong, Chen Lin, et al. Influences of solution and aging treatment process on microstructure and mechanical properties of Ti-6Al-6V-2Sn titanium alloy rods[J]. The Chinese Journal of Nonferrous Metals, 2018, 24(4): 677-684. [7]戚运莲, 杜 宇, 刘 伟, 等. 热处理温度对TC10钛合金棒材组织与性能的影响[J]. 钛工业进展, 2011, 28(5): 31-33. Qi Yunlian, Du Yu, Liu Wei, et al. Effect of heat treatment on microstructure and properties of TC10 titanium alloys[J]. Titanium Industry Progress, 2011, 28(5): 31-33. [8]张尚洲, 王青江, 李阁平, 等. 高温钛合金Ti-60热处理窗口与性能的关系[J]. 金属学报, 2002, 38(S1): 70-73. Zhang Shangzhou, Wang Qingjiang, Li Geping, et al. Relationship between heat treatment window and properties of high temperature titanium alloy Ti-60[J]. Acta Metallurgica Sinica, 2002, 38(S1): 70-73. [9]杨 义, 徐 锋, 黄爱军, 等. 全片层BT18Y钛合金在α+β相区固溶时的显微组织演化[J]. 金属学报, 2005, 41(7): 713-720.Yang Yi, Xu Feng, Huang Aijun, et al. Evolution of microstructure of full lamellar titanium alloy BT18Y solutionized at α+β phase field[J]. Acta Metallurgica Sinica, 2005, 41(7): 713-720. [10]鲍利索娃 E A. 钛合金金相学[M]. 陈石卿, 译. 北京: 国防工业出版社, 1980: 413. [11]谭玉全. 热处理对TC4钛合金组织、性能的影响及残余应力消除方法的研究[D]. 重庆: 重庆大学, 2016: 24-26. [12]Pere B V, Verona B O, Sabine S, et al. Tracking the α″ martensite decomposition during continuous heating of a Ti-6Al-6V-2Sn alloy[J]. Acta Materialia, 2017, 135: 132-143. [13]Sauer C, Luetjering G. Thermo-mechanical processing of high strength Ti-titanium alloys and effects on microstructure and properties[J]. Journal of Materials Processing Technology, 2001, 117: 311-319. [14]Lütjering G, Williams J C. Titanium[M]. Berlin: Springer Verlag, 2007: 202-205. [15]Chi G, D Yi, Jiang B, et al. Crack propagation during Charpy impact toughness testing of Ti-Al-V-Mo-Zr alloy tubes containing equiaxed and lamellar microstructures[J]. Journal of Alloys and Compounds, 2020, 852: 156581. [16]Li S K, Xiong B Q, Hui S X, et al. Comparison of the fatigue and fracture of Ti-6Al-2Zr-1Mo-1V with lamellar and bimodal microstructures[J]. Materials Science and Engineering A, 2007, 140: 460-465. [17]Huang C, Wang F, Wen X, et al. Tensile performance and impact toughness of Ti-55531 alloy with multilevel lamellar microstructure[J]. Journal of Materials Science, 2021, 56: 8848-8870. |