[1]李佐政, 牛显明, 刘文朝, 等. 金属材料深冷处理技术研究进展[J]. 热加工工艺, 2019, 48(10): 42-46. Li Zuozheng, Niu Xianming, Liu Wenzhao, et al. Research progress on cryogenic treatment technology of metal materials[J]. Hot Working Technology, 2019, 48(10): 42-46. [2]Delprete C, Baldissera P. Cryogenic treatment: A bibliographic review[J]. The Open Mechanical Engineering Journal, 2008, 2: 1-11. [3]Thakurai R, Patle H, Sunil B R, et al. Effect of cryogenic treatment duration on the microhardness and tribological behavior of 40CrMoV5 tool steel[J]. Materials Today: Proceedings, 2021, 38: 2140-2144. [4]Cardoso P H S, Israel C L, Da Silva M B, et al. Effects of deep cryogenic treatment on microstructure, impact toughness and wear resistance of an AISI D6 tool steel[J]. Wear, 2020, 456-457: 203382. [5]Katoch S, Sehgal R, Singh V, et al. Improvement of tribological behavior of H-13 steel by optimizing the cryogenic-treatment process using evolutionary algorithms[J]. Tribology International, 2019, 140: 105895. [6]Li S H, Xiao M G, Ye G M, et al. Effects of deep cryogenic treatment on microstructural evolution and alloy phases precipitation of a new low carbon martensitic stainless bearing steel during aging[J]. Materials Science and Engineering A, 2018, 732: 167-177. [7]李东辉, 李志敏, 肖茂果, 等. 深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响[J]. 材料研究学报, 2019, 33(8): 561-571. Li Donghui, Li Zhimin, Xiao Maoguo, et al. Effect of deep cryogenic treatment on mechanical property and microstructure of a low carbon high alloy martensitic bearing steel during tempering[J]. Chinese Journal of Materials Research, 2019, 33(8): 561-571. [8]袁兆静. 国产G102Cr18Mo钢与进口440C钢的组织与性能分析[J]. 金属热处理, 2018, 43(3): 71-75. Yuan Zhaojing. Analysis on microstructure and property of domestic G102Cr18Mo steel and imported 440C steel[J]. Heat Treatment of Metals, 2018, 43(3): 71-75. [9]Yang J R, Yu T H, Wang C H. Martensitic transformations in AISI 440C stainless steel[J]. Materials Science and Engineering A, 2006, 438-440: 276-280. [10]Idayan A, Gnanavelbabu A, Rajkumar K. Influence of deep cryogenic treatment on the mechanical properties of AISI 440C bearing steel[J]. Procedia Engineering, 2014, 97: 1683-1691. [11]Kumar V, Thirumurugan R Shanmugam. Investigation on microstructural and mechanical properties of sub-zero processed AISI 440C steel[J]. International Journal of Materials Research, 2020, 111(9): 761-770. [12]康 超, 郭秀乔, 唐雪明, 等. 冷处理温度对440C不锈钢组织和硬度的影响[J]. 热加工工艺, 2017, 46(24): 211-212, 216. Kang Chao, Guo Xiuqiao, Tang Xueming, et al. Effects of cold treatment temperature on microstructure and hardness of 440C stainless steel[J]. Hot Working Technology, 2017, 46(24): 211-212, 216. [13]Salleh S H, Derman M N B, Omar M Z, et al. Microstructure and properties of heat-treated 440C martensitic stainless steel[J]. Defect and Diffusion Forum, 2013, 334-335: 105-110. [14]Idayan A, Elanchezhian C, Vijayaramnath B, et al. Role of cryogenic treatment on the microstructure and wear resistance of AISI 440C bearing steel[J]. Caribbean Journal of Science, 2019, 53: 516-533. [15]Kim M, Lee K M. Effect of heat treatment on microstructure, mechanical property and corrosion behavior of STS 440C martensitic stainless steel[J]. Korean Journal of Materials Research, 2021, 31(1): 29-37. [16]Bush R, Gill J, Teakell J. Heat treatment optimization and fabrication of a 440C stainless steel knife[J]. The Journal of The Minerals, Metals and Materials Society, 2016, 68(12): 3167-3173. [17]Li W, Li D Y. Variations of work function and corrosion behaviors of deformed copper surfaces[J]. Applied Surface Science, 2005, 240(1-4): 388-395. [18]王志亮. 金属腐蚀与防护研究[J]. 内燃机与配件, 2021(6): 153-154. Wang Zhiliang. Metal corrosion and protection research[J]. Internal Combustion Engine & Parts, 2021(6): 153-154. [19]康沫狂, 朱 明. 淬火合金钢中的奥氏体稳定化[J]. 金属学报, 2005, 41(7): 673-679. Kang Mokuang, Zhu Ming. Stabilization of austenite in quenched alloy steels[J]. Acta Metallurgica Sinica, 2005, 41(7): 673-679. |