[1]张 楠, 吕超然, 徐 乐. 火炮身管用钢现状及发展趋势[J]. 中国冶金, 2019, 29(5): 6-9. Zhang Nan, Lü Chaoran, Xu Le. Current status and development trend of gun barrel steel[J]. China Metallurgy, 2019, 29(5): 6-9. [2]郭 峰, 黄进峰, 吴护林. 高强韧炮钢的组织和力学性能[J]. 金属热处理, 2005, 30(11): 31-34. Guo Feng, Huang Jinfeng, Wu Hulin. Microstructure and mechanical properties of a gun steel with high strength and toughness[J]. Heat Treatment of Metals, 2005, 30(11): 31-34. [3]焦贵伟, 胡朝根. 火炮身管寿命评估预测[J]. 兵工学报, 2018, 39(5): 66-69, 74. Jiao Guiwei, Hu Chaogen. Research of evaluation and prediction technology for gun barrel life[J]. Journal of Ordnance Equipment Engineering, 2018, 39(5): 66-69, 74. [4]Xu K, Wang X F, Cui H C, et al. Investigation on lcf behavior of welded joint at different temperatures for bainite steel[J]. Chinese Journal of Mechanical Engineering, 2019, 32(2): 73-80. [5]Burton L, Carter R, Champagne R, et al. Army targets age old problems with new gun barrel materials[J]. Amptiac Quartely, 2004, 18(4): 49-55. [6]赵 隆. 某炮钢材料的强化机理研究[D]. 南京: 南京理工大学, 2007. Zhao Long. A study on the strengthen reason of certain big gun tube material[D]. Nanjing: Nanjing University of Science and Technology, 2007. [7]李秉旗, 李中麟. 大口径炮弹包装现状与发展趋势[J]. 包装工程, 2009(9): 48-49. Li Bingqi, Li Zhonglin. Present situation and development trend of large-calibre projectile packaging[J]. Packaging Engineering, 2009(9): 48-49. [8]Huang C P, Lin X, Yang H O, et al. Microstructure and tribological properties of laser forming repaired 34CrNiMo6 steel[J]. Materials, 2018, 11(9): 28-34. [9]徐东升, 贾长治, 刘广生, 等. 火炮身管寿命预测技术发展研究[J]. 价值工程, 2013, 37(5): 316-318. Xu Dongsheng, Jia Changzhi, Liu Guangsheng, et al. The research of gun barrel life expectancy technology development[J]. Value Engineering, 2013, 37(5): 316-318. [10]许耀峰, 单春来, 刘朋科, 等. 火炮身管寿终机理及寿命预测方法研究综述[J]. 火炮发射与控制学报, 2020, 41(3): 89-94, 101. Xu Yaofeng, Shan Chunlai, Liu Pengke, et al. Review of the research on failure mechanism and life prediction method of gun barrel[J]. Journal of Gun Launch and Control, 2020, 41(3): 89-94, 101. [11]周重光, 杨明江, 彭林华, 等. 先进高重频激光处理对镀铬层结合特性的影响[J]. 兵器材料科学与工程, 2003(5): 15-18. Zhou Chongguang, Yang Mingjiang, Peng Linhua, et al. Effect of advanced high-frequency laser treating on joining condition of chrome cladding materia[J]. Ordnance Material Science and Engineering, 2003(5): 15-18. [12]Li W Z, Chen Q Z, Polcar T, et al. Influence of Zr alloying on the mechanical properties, thermal stability and oxidation resistance of Cr-Al-N coatings[J]. Applied Surface Science, 2014, 317: 269-277. [13]Meng J S, Ji Z S. Effect of different fillers on oxidation behavior of low-temperature chromizing coating[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(6): 1785-1790. [14]Zhou Y B, Chen H, Zhang H, et al. Preparation and oxidation of an Y2O3-dispersed chromizing coating by pack cementation at 800 ℃[J]. Vacuum, 2008, 82(8): 748-753. [15]马朝平, 胡建军, 刘 妤. 材料表面渗金属技术的研究进展[J]. 重庆理工大学学报(自然科学), 2016, 30(10): 65-70. Ma Chaoping, Hu Jianjun, Liu Yu. Research progress of metallic cementation technology on material surface[J]. Journal of Chongqing University of Technology(Natural Science), 2016, 30(10): 65-70. [16]Hu J J, Zhang Y Q, Yang X, et al. Effect of pack-chromizing temperature on microstructure and performance of AISI 5140 steel with Cr-coatings[J]. Surface and Coatings Technology, 2018, 344: 656-663. [17]Wu C L, Hong Y, Chen W L, et al. A double strengthened surface layer fabricated by nitro-chromizing on carbon steel[J]. Surface and Coatings Technology, 2016, 298: 83-92. [18]Hu J J, Ma C P, Yang X, et al. Microstructure evolution during continuous cooling in AISI 5140 steel processed by induction heating chromizing[J]. Journal of Materials Engineering and Performance, 2017, 26(11): 5530-5537. [19]Zeng J, Hu J J, Yang X, et al. Evolution of the microstructure and properties of pre-boronized coatings during pack-cementation chromizing[J]. Coating, 2020, 10(2): 159-172. [20]王洪孔, 郑 可, 高 洁, 等. γ-TiAl 合金表面 TiC渗镀层的摩擦磨损性能[J]. 中国表面工程, 2018, 31(6): 28-34. Wang Hongkong, Zheng Ke, Gao Jie, et al. Wear properties of TiC permeation layer prepared on γ-TiAl alloy[J]. China Surface Engineering, 2018, 31(6): 28-34. [21]李龙博, 李争显, 刘林涛, 等. 反应温度及时间对奥氏体不锈钢渗铬层组织结构的影响[J]. 稀有金属材料与工程, 2021, 50(5): 1743-1752. Li Longbo, Li Zhengxian, Liu Lintao, et al. Effect of reaction temperature and time on microstructure of chromizing layer on austenitic stainless steel matrix[J]. Rare Metal Materials and Engineering, 2021, 50(5): 1743-1752. |