[1]冯学东, 凌有临, 李 惠, 等. 强韧化工艺对35CrMo钢组织与性能的影响[J]. 金属热处理, 2018, 43(1): 78-81. Feng Xuedong, Ling Youlin, Li Hui, et al. Effect of strengthening and toughening process on microstructure and properties of 35CrMo steel[J]. Heat Treatment of Metals, 2018, 43(1): 78-81. [2]黄元春, 王三星, 肖政兵. 不同条件高温压缩变形后35CrMo钢的显微组织[J]. 机械工程材料, 2017, 41(6): 87-92. Huang Yuanchun, Wang Sanxing, Xiao Zhengbing. Microstructures of 35CrMo steel after high temperature compression deformation under different conditions[J]. Materials for Mechanical Engineering, 2017, 41(6): 87-92. [3]何 珺, 张 辉, 刘 哲, 等. 35CrMo钢过冷奥氏体转变曲线的测定[J]. 金属热处理, 2017, 42(12): 6-9. He Jun, Zhang Hui, Liu Zhe, et al. Determination of CCT curves of 35CrMo steel[J]. Heat Treatment of Metals, 2017, 42(12): 6-9. [4]刘军刚. 35CrMo钢板热处理工艺研究与应用[J]. 金属热处理, 2015, 40(2): 183-185. Liu Jungang. Research and application of heat treatment process for 35CrMo steel plate[J]. Heat Treatment of Metals, 2015, 40(2): 183-185. [5]孙维连, 杨钰瑛. 35CrMo钢拉杆显微组织与性能[J]. 金属热处理, 2005, 30(11): 79-82. Sun Weilian, Yang Yuying. Microstructure and properties of pulling pole of 35CrMo steel[J]. Heat Treatment of Metals, 2005, 30(11): 79-82. [6]刘宗昌, 计云萍, 段宝玉, 等. 板条状马氏体的亚结构及形成机制[J]. 材料热处理学报, 2011, 32(3): 56-61. Liu Zongchang, Ji Yunping, Duan Baoyu, et al. Substructure and formation mechanism of lath martensite[J]. Transactions of Materials and Heat Treatment, 2011, 32(3): 56-61. [7]王 芳, 袁书强, 田雨江, 等. 带状组织减轻或消除工艺研究现状[J]. 热加工工艺, 2013, 42(5): 52-54. Wang Fang, Yuan Shuqiang, Tian Yujiang, et al. Current research situation of alleviating or eliminating band structure in steel[J]. Hot Working Technology, 2013, 42(5): 52-54. [8]张迎晖, 赖泓州, 赵鸿金. 钢中带状组织的研究现状[J]. 轧钢, 2014, 31(3): 45-47. Zhang Yinghui, Lai Hongzhou, Zhao Hongjin. Research status of banded structure in steel[J]. Steel Rolling, 2014, 31(3): 45-47. [9]Speich G R, Leslie W C. Tempering of steel[J]. Metallurgical Transactions, 1972, 3(5): 1043-1054. [10]Chen H, Appolaire B, Zwaag S V D. Application of cyclic partial phase transformations for identifying kinetic transitions during solid-state phase transformations: Experiments and modeling[J]. Acta Materialia, 2011, 59(17): 6751-6760. [11]沈显璞, 宋诚一. 碳素双相钢的回火过程[J]. 钢铁研究总院学报, 1987(4): 70-76. Shen Xianpu, Song Chengyi. Tempering processes of plain carbon dual-phase steels[J]. Central Iron and Steel Research Institute Technical Bulletin, 1987(4): 70-76. [12]俞德刚. 铁基马氏体时效-回火转变理论及其强韧性[M]. 上海: 上海交通大学出版社, 2008. [13]周永强. 35CrMo钢圆柱销纵向开裂原因分析[J]. 金属热处理, 2021, 46(4): 239-242. Zhou Yongqiang. Causean analysis on longitudinal cracking of 35CrMo steel cylinder pin[J]. Heat Treatment of Metals, 2021, 46(4): 239-242. [14]郭会光, 张巧丽, 游晓红, 等. 35CrMo钢热变形机制的模拟研究[J]. 大型铸锻件, 2000(2): 22-25. Guo Huiguang, Zhang Qiaoli, You Xiaohong, et al. Simulated research on hot forming mechanism of 35CrMo steel[J]. Heavy Casting and Forging, 2000(2): 22-25. [15]寿先涛, 郑必举, 樊晓都, 等. 高强度马氏体35CrMo钢的绝热剪切特性[J]. 金属热处理, 2018, 43(10): 36-39. Shou Xiantao, Zheng Biju, Fan Xiaodu, et al. Adiabatic shear characteristic of high strength martensitic 35CrMo steel[J]. Heat Treatment of Metals, 2018, 43(10): 36-39. [16]苏立武, 陈 玲. 轨道交通高端轴类零件用材料对比[J]. 金属热处理, 2020, 45(6): 167-172. Su Liwu, Chen Ling. Comparison of materials for high-end shaft parts of rail transit[J]. Heat Treatment of Metals, 2020, 45(6): 167-172. |