[1]Peng Y W, Liu Z, Chen C M, et al. Effect of low-temperature surface hardening by carburization on the fatigue behavior of AISI 316L austenitic stainless steel[J]. Materials Science and Engineering A, 2020, 769: 138524. [2]Sun Y. Kinetics of low temperature plasma carburizing of austenitic stainless steels[J]. Journal of Materials Processing Technology, 2005, 168(2): 189-194. [3]Sun Y, Li X, Bell T. Low temperature plasma carburizing of austenitic stainless steels for improved wear and corrosion resistance[J]. Surface Engineering, 1999, 15(1): 49-54. [4]姜 勇, 李 洋, 陈野风, 等. 奥氏体不锈钢低温表面渗碳技术的研究进展[J]. 机械工程材料, 2018, 42(10): 1-7. Jiang Yong, Li Yang, Chen Yefeng, et al. Research process on low temperature surface carburization technique of austenitic stainless steel[J]. Materials for Mechanical Engineering, 2018, 42(10): 1-7. [5]Deepak T L, Mithra G A, Lokesh K, et al. Stability of expanded austenite by gas nitriding process on austenitic stainless steel material under low temperature conditions[J]. Materials Today: Proceedings, 2020, 27: 1681-1684. [6]Lu S J, Zhao X B, Wang S K, et al. Performance enhancement by plasma nitriding at low gas pressure for 304 austenitic stainless steel[J]. Vacuum, 2017, 145: 334-339. [7]李文明, 罗德福, 韩瑞鹏, 等. 可控离子渗入工艺对304不锈钢组织和耐磨抗蚀性能的影响[J]. 金属热处理, 2019, 44(9): 177-181. Li Wenming, Luo Defu, Han Ruipeng, et al. Effect of programmable ion permeation process on microstructure and anti-wear anti-corrosion properties of 304 stainless steel[J]. Heat Treatment of Metals, 2019, 44(9): 177-181. [8]李 杨, 何永勇, 张尚洲, 等. AISI304奥氏体不锈钢阳极渗氮层的组织与摩擦磨损性能[J]. 材料热处理学报, 2017, 38(2): 152-157. Li Yang, He Yongyong, Zhang Shangzhou, et al. Tribological properties and structure of anodic nitride layer on AISI304 austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(2): 152-157. [9]马胜歌, 郭元元, 周 祎, 等. 304奥氏体不锈钢低温离子渗氮和氮碳共渗工艺[J]. 金属热处理, 2011, 36(4): 31-34. Ma Shengge, Guo Yuanyuan, Zhou Yi, et al. Low temperature plasma nitriding and plasma nitrocarburizing of AISI304 stainless steel[J]. Heat Treatment of Metals, 2011, 36(4): 31-34. [10]Tsujikawa M, Yoshida D, Yamauchi N, et al. Surface material design of 316 stainless steel by combination of low temperature carburizing and nitriding[J]. Surface and Coatings Technology, 2005, 200(1-4): 507-511. [11]罗建东, 杨颖仪, 林育周. 离子扩渗工艺对316L不锈钢表层组织及磁性能的影响[J]. 金属热处理, 2021, 46(7): 207-211. Luo Jiandong, Yang Yingyi, Lin Yuzhou. Effect of plasma diffusion process on surface microstructure and magnetic properties of 316L stainless steel[J]. Heat Treatment of Metals, 2021, 46(7): 207-211. [12]马森林, 高文栋, 沈玉明. ECM低压真空渗碳技术应用研究与探讨[J]. 汽车工艺与材料, 2004(8): 27-30. Ma Senlin, Gao Wendong, Shen Yuming. Application researches and discussion on ECM low pressure vacuum carburizing technology[J]. Automobile Technology and Material, 2004(8): 27-30. [13]荣冬松. 316L奥氏体不锈钢低温超饱和气体渗碳表面强化行为研究[D]. 南京: 南京工业大学, 2016: 18-20. [14]马 飞. 奥氏体不锈钢低温气体渗碳层组织性能及催渗技术研究[D]. 武汉: 机械科学研究总院, 2015: 51-54. [15]Hong H U, Rho B S, Nam S W. Correlation of the M23C6 precipitation morphology with grain boundary characteristics in austenitic stainless steel[J]. Materials Science and Engineering A, 2001, 318(1/2): 285-292. [16]Sun Y, Li X, Bell T. Structural characteristics of low temperature plasma carburized austenitic stainless steel[J]. Materials Science and Technology, 1999, 15(10): 1171-1178. [17]姜 勇, 李 洋, 张显程, 等. 低温超饱和气体渗碳对316L奥氏体不锈钢力学性能的影响[J]. 中国表面工程, 2018, 31(1): 32-38. Jiang Yong, Li Yang, Zhang Xiancheng, et al. Effects of low temperature supersaturation gaseous carburization on mechanical properties of 316L austenitic stainless steel[J]. China Surface Engineering, 2018, 31(1): 32-38. [18]王万智, 唐弄娣. 钢的渗碳[M]. 北京: 机械工业出版社, 1985: 28-29. [19]Tsujikawa M, Noguchi S, Yamauchi N, et al. Effect of molybdenum on hardness of low-temperature plasma carburized austenitic stainless steel[J]. Surface and Coatings Technology, 2007, 201(9-11): 5102-5107. |