[1]Herzog D, Seyda V, Wycisk E, et al. Additive manufacture of metals[J]. Acta Materialia, 2016, 117: 371-392. [2]Eckart U, Robert K, Tiago B K, et al. Additive manufacturing of titanium alloy for aircraft components[J]. Procedia CIRP, 2015, 35: 55-60. [3]Sieniawski J, Ziaja W, Kubiak K, et al. Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys—Titanium Alloy-Advance in Properties Control[M]. Titanium Alloys-Advances in Properties Control, 2013: 69-80. [4]Asl H G. Investigation of friction and wear performance on oxidized Ti6Al4V alloy at different temperatures by plasma oxidation method under ambient air and vacuum conditions[J]. Vacuum, 2020, 180(3): 109578. [5]Zhao Z, Chen J, Tan H, et al. Achieving superior ductility for laser solid formed extra low interstitial Ti-6Al-4V titanium alloy through equiaxial alpha microstructure[J]. Scripta Materialia, 2018, 146: 187-191. [6]Lei H, Yuan J, Chao L. Influence of titanium concentration on mechanical properties and wear resistance to Ti6Al4V of Ti-C: H on cemented carbide[J]. Vacuum, 2017, 138: 1-7. [7]Chang K, Wang X, Liang E, et al. On the texture and mechanical property anisotropy of Ti6Al4V alloy fabricated by powder-bed based laser additive manufacturing[J]. Vacuum, 2020, 181: 109732. [8]Rafi H K, Karthik N V, Gong H, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting[J]. Journal of Materials Engineering and Performance, 2013, 22(12): 248. [9]Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58: 3303-3312. [10]Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V[J]. Materials Science and Engineering A, 2014, 616: 1-11. [11]Vilaro T, Colin C, Bartout J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting[J]. Metallurgical and Materials Transactions A, 2011, 42(10): 3190-3199. [12]Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti-6Al-4V produced by selective laser melting: Microstructure and mechanical properties[J]. Journal of Alloy and Compounds, 2012, 541: 177-185. [13]张胜雷, 陈 卓, 曲寿江, 等. 热处理对电子束选区熔化制备的Ti-6Al-4V合金组织与力学性能的影响[J]. 热加工工艺, 2018, 47(10): 226-231. Zhang Shenglei, Chen Zhuo, Qu Shoujiang, et al. Influence of heat treatment on microstructure and mechanical properties of Ti-6Al-4V alloy fabricated via electron beam selective melting[J]. Hot Working Technology, 2018, 47(10): 226-231. [14]王文博, 马瑞鑫, 井志成, 等. 固溶时效处理对激光3D打印TC4合金组织与性能的影响[J]. 中国激光, 2019, 46(10): 113-121. Wang Wenbo, Ma Ruixin, Jing Zhicheng, et al. Effect of solution-aging treatment on microstructure and properties of TC4 fabricated by laser three-dimensional printing[J]. Chinese Journal of Laser, 2019, 46(10): 113-121. [15]李文贤, 易丹青, 刘会群, 等. 热处理制度对选择性激光熔化成形TC4钛合金的组织与力学性能的影响[J]. 粉末冶金材料科学与工程, 2017, 22(1): 70-78. Li Wenxian, Yi Danqing, Liu Huiqun, et al. Effect of the heat treatment process on microstructure and mechanical properties of the TC4 alloy process by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(1): 70-78. [16]Galarraga H, warren R J, Lados D A, et al. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM)[J]. Materials Science and Engineering A, 2017, 685: 417-428. [17]Sabban R, Bahl S, Chatterjee K, et al. Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness[J]. Acta Materialia, 2019, 162: 239-254. [18]Zhang S Y, Lin X, Chen J, et al. Heat-treated microstructure and mechanical properties of laser solid forming Ti-6Al-4V alloy[J]. Rare Metals, 2009, 28(6): 537-544. [19]Liang Z L, Sun Z G, Zhang W S, et al. The effect of heat treatment on microstructure evolution and tensile properties of selective laser melted Ti6Al4V alloy[J]. Journal of Alloys and Compounds, 2018, 782: 1041-1048. [20]Wang J, Lin X, Wang M, et al. Effects of subtransus heat treatments on microstructure features and mechanical properties of wire and arc additive manufactured Ti-6Al-4V alloy[J]. Materials Science and Engineering A, 2020, 776: 139020. [21]薛 强, 彭雯雯, 曾卫东. α相形态与含量对 TA15钛合金力学性能的影响[J]. 钛工业进展, 2015(2): 13-16. Xue Qiang, Peng Wenwen, Zeng Weidong. Effect of alpha phase morphology and content on properties of TA15 titanium alloy[J]. Titanium Industry Progress, 2015(2): 13-16. [22]Hu J N, Zhang J H, Wei Y, et al. Effect of heat treatment on microstructure and tensile properties of Ti-6Al-4V alloy produced by coaxial electron beam wire feeding additive manufacturing[J]. JOM, 2021, 73(7): 1-9. |