[1]Moor E D, Gibbs P J, Speer J G, et al. Strategies for third-generation advanced high-strength steel development[J]. Iron and Steel Technology, 2010, 7(11): 133-144. [2]朱国明, 康永林, 朱 帅. 汽车用超高强QP钢的工艺与组织性能研究[J]. 机械工程学报, 2017, 53(12): 110-117. Zhu Guoming, Kang Yonglin, Zhu Shuai. Study on process, microstructure and property of ultra-high strength QP steel for automobile[J]. Journal of Mechanical Engineering, 2017, 53(12): 110-117. [3]Schmitt J H, Lung T. New developments of advanced high-strength steels for automotive applications[J]. Comptes Rendus Physique, 2018, 19(8): 641-656. [4]汪 淼, 张 聪, 胡 锋, 等. 相变诱导塑性汽车用钢的发展现状与趋势[J]. 钢铁研究学报, 2016, 28(8): 1-7. Wang Miao, Zhang Cong, Hu Feng, et al. Current status and trend of TRIP automotive steels[J]. Journal of Iron and Steel Research, 2016, 28(8): 1-7. [5]Speer J G, Matlock D K, Moor D E, et al. Highlights of recent progress in automotive sheet steel development[J]. World Iron Steel, 2013, 13(5): 48-54. [6]Matlock D K, Speer J G. Third Generation of AHSS: Microstructure Design Concepts[M]. London: Springer, 2009: 185-205. [7]Speer J G, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [8]Matlock D K, Brautigam V E, Speer J G. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel[J]. Materials Science Forum, 2003, 426-432: 1089-1094. [9]Bagliani E P, Santofimia M J, Zhao L, et al. Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel[J]. Materials Science and Engineering A, 2013, 559: 486-495. [10]李 辉, 米振莉, 张 华, 等. 配分时间对Q&P钢力学性能及显微组织的影响[J]. 材料导报, 2017, 31(4): 83-86, 93. Li Hui, Mi Zhenli, Zhang Hua, et al. Influence of partition time on mechanical properties and microstructure of Q&P steel[J]. Materials Review, 2017, 31(4): 83-86, 93. [11]田亚强, 曹仲乾, 潘红波, 等. 两相区温度对中锰钢IQ&P处理后组织和力学性能的影响[J]. 金属热处理, 2020, 45(7): 37-41. Tian Yaqiang, Cao Zhongqian, Pan Hongbo, et al. Effect of intercritical temperature on microstructure and mechanical properties of medium manganese steel after IQ&P treatment[J]. Heat Treatment of Metals, 2020, 45(7): 37-41. [12]Rizzo F C, Edmonds D V, He K, et al. Carbon enrichment of austenite and carbide precipitation during the quenching and partitioning (Q&P) process[J]. Solid Phase Transformations in Inorganic Materials, 2005: 535-544. [13]Zhong N, Wang X D, Wang L, et al. Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process[J]. Materials Science and Engineering A, 2009, 506(1/2): 111-116. [14]Zhang J, Ding H, Misra R, et al. Microstructural evolution and consequent strengthening through niobium-microalloying in a low carbon quenched and partitioned steel[J]. Materials Science and Engineering, 2015, 641: 242-248. [15]尹红霞, 李 辉, 史春丽, 等. 奥氏体化温度对汽车用QP钢组织性能的影响[J]. 金属热处理, 2017, 42(11): 108-111. Yin Hongxia, Li Hui, Shi Chunli, et al. Effect of austenitizing temperature on microstructure and mechanical properties of automotive QP steel[J]. Heat Treatment of Metals, 2017, 42(11): 108-111. [16]余香芸, 石增敏, 池 波, 等. 热成形配分工艺对超高强钢组织和力学性能的影响[J]. 钢铁研究学报, 2015, 27(4): 63-68. Yu Xiangyun, Shi Zengmin, Chi Bo, et al. Effects of hot formation and partitioning process on microstructure and mechanical properties of ultra-high strength steel[J]. Journal of Iron and Steel Research, 2015, 27(4): 63-68. [17]徐祖耀. 马氏体相变与马氏体[M]. 2版.北京: 科学出版社, 1999. [18]王亚婷, 万德成, 冯树明, 等. 淬火温度对中锰QP钢组织和性能的影响[J]. 金属热处理, 2020, 45(5): 172-176. Wang Yating, Wan Decheng, Feng Shuming, et al. Effect of quenching temperature on microstructure and mechanical properties of medium manganese QP steel[J]. Heat Treatment of Metals, 2020, 45(5): 172-176. |