[1]李 根, 兰 鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714. Li Gen, Lan Peng, Zhang Jiaquan. Solidification structure refinement in TWIP steel by Ce inoculation[J]. Acta Metallurgica Sinica, 2020, 56(5): 704-714. [2]支辉辉. Fe-Mn-C(-Al)系TWIP钢的微观组织演化和力学行为研究[D]. 北京: 北京科技大学, 2021. Zhi Huihui. Microstructure evolution and mechanical behavior of Fe-Mn-C(-Al) twinning-induced plasticity (TWIP) steels[D]. Beijing: University of Science and Technology Beijing, 2021. [3]韩 雨, 李大赵, 申丽媛, 等. 不同退火工艺下TWIP钢微观组织及力学性能演变[J]. 钢铁研究学报, 2019, 31(12): 1092-1099. Han Yu, Li Dazhao, Shen Liyuan, et al. Evolution of microstructure and mechanical properties of TWIP steels in different annealing processes[J]. Journal of Iron and Steel Research, 2019, 31(12): 1092-1099. [4]Rahman K M, Vorontsov V A, Dye D. The effect of grain size on the twin initiation stress in a TWIP steel[J]. Acta Materialia, 2015, 89: 247-257. [5]Ueji R, Tsuchida N, Terada D, et al. Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure[J]. Scripta Materialia, 2008, 59(9): 963-966. [6]Tian Y Z, Bai Y, Zhao L J, et al. A novel ultrafine-grained Fe-22Mn-0.6C TWIP steel with superior strength and ductility[J]. Materials Characterization, 2017, 126: 74-80. [7]张哲峰, 邵琛玮, 王 斌, 等. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486. Zhang Zhefeng, Shao Chenwei, Wang Bin, et al. Tensile and fatigue properties and deformation mechanisms of twinning-induced plasticity steels[J]. Acta Metallurgica Sinica, 2020, 56(4): 476-486. [8]李 烨, 夏鹏成, 谢 鲲, 等. 退火温度对Fe-Mn-Al-C钢组织和拉伸性能的影响[J]. 金属热处理, 2021, 46(4): 77-82. Li Ye, Xia Pengcheng, Xie Kun, et al. Effect of annealing temperature on microstructure and tensile properties of Fe-Mn-Al-C steel[J]. Heat Treatment of Metals, 2021, 46(4): 77-82. [9]姜英花, 邝 霜, 刘华赛. 退火温度对孪晶诱发塑性钢组织和性能的影响[J]. 金属热处理, 2016, 41(5): 40-43. Jiang Yinghua, Kuang Shuang, Liu Huasai. Effect of annealing temperature on microstructure and mechanical properties of TWIP steel[J]. Heat Treatment of Metals, 2016, 41(5): 40-43. [10]康 靓, 米晓希, 王海莲, 等. 人工神经网络在材料科学中的研究进展[J]. 材料导报, 2020, 34(21): 21172-21179. Kang Jing, Mi Xiaoxi, Wang Hailian, et al. Research progress of artificial neural networks in material science[J]. Materials Reports, 2020, 34(21): 21172-21179. [11]童 希, 王荣吉, 王亚祥, 等. 基于BP神经网络和遗传算法的TWIP钢热处理工艺参数优化[J]. 热加工工艺, 2018, 47(16): 176-179. Tong Xi, Wang Rongji, Wang Yaxiang, et al. Optimization of heat treatment process parameters of TWIP steel based on BP neural network and genetic algorithm[J]. Hot Working Technology, 2018, 47(16): 176-179. [12]林 毅, 郑子樵, 张海锋, 等. 热处理工艺对2A97Al-Li合金拉伸性能的影响: 实验和BP人工神经网络模拟(英文)[J]. 中国有色金属学报(英文版), 2013, 23(6): 1728-1736. Lin Yi, Zheng Ziqiao, Zhang Haifeng, et al. Effect of heat treatment process on tensile properties of 2A97 Al-Li alloy: Experiment and BP neural network simulation[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6): 1728-1736. [13]刘敬福, 韩明明, 李赫亮, 等. 基于ANN的ZA35合金热处理后阻尼性能的预测[J]. 金属热处理, 2018, 43(9): 223-226. Liu Jingfu, Han Mingming, Li Heliang, et al. Prediction of damping property of ZA35 alloy after heat treatment based on ANN[J]. Heat Treatment of Metals, 2018, 43(9): 223-226. [14]王 玉, 谭 力, 邢 渊, 等. 人工神经网络在热处理质量控制中的应用研究[J]. 机械工程材料, 2000(2): 8-9. Wang Yu, Tan Li, Xing Yuan, et al. Study on the application of ANN to heat treatment quality control[J]. Materials for Mechanical Engineering, 2000(2): 8-9. [15]翁 翎, 谭 丽. 基于BP神经网络的连续退火对TRIP钢力学性能的影响[J]. 热加工工艺, 2013, 42(20): 199-201, 203. Weng Ling, Tan Li. Effect of continuous annealing on mechanical properties of TRIP steel based on BP neural network[J]. Hot Working Technology, 2013, 42(20): 199-201, 203. |