[1]Zhong Liwei, Gao Wenli, Feng Zhaohui, et al. Microstructure characteristics and constitutive modeling for elevated temperature flow behavior of Al-Cu-Li X2A66 alloy[J]. Journal of Materials Research, 2018, 33(8): 912-922. [2]冯朝辉, 钟立伟, 高文理, 等. 时效制度对2050铝锂合金力学性能及断裂行为的影响[J]. 金属热处理, 2019, 44(9): 108-111. Feng Zhaohui, Zhong Liwei, Gao Wenli, et al. Effect of aging on mechanical properties and fracture behavior of 2050 Al-Li alloy[J]. Heat Treatment of Metals, 2019, 44(9): 108-111. [3]Zhong Liwei, Gao Wenli, Feng Zhaohui, et al. Hot deformation characterization of as-homogenized Al-Cu-Li X2A66 alloy through processing maps and microstructural evolution[J]. Journal of Materials Science and Technology, 2019, 35(10): 2409-2421. [4]李天麒, 尹 晨, 闫原原, 等. 退火工艺对搅拌摩擦加工镁合金微观组织和显微硬度的影响[J]. 金属热处理, 2020, 45(5): 141-146. Li Tianqi, Yin Chen, Yan Yuanyuan, et al. Effect of annealing process on microstructure and microhardness of magnesium alloy fabrication by friction stir processing[J]. Heat Treatment of Metals, 2020, 45(5): 141-146. [5]Martynenko N, Lukyanova E, Serebryany V, et al. Effect of equal channel angular pressing on structure, texture, mechanical and in-service properties of a biodegradable magnesium alloy[J]. Materials Letters, 2019, 238: 218-221. [6]Toth L S, Gu C F. Ultrafine-grain metals by severe plastic deformation[J]. Materials Characterization, 2014, 92: 1-14. [7]郭 强, 严红革, 陈振华, 等. 多向锻造技术研究进展[J]. 材料导报, 2007, 21(2): 106-108. Guo Qiang, Yan Hongge, Chen Zhenhua, et al. Research progress in multiple forging process[J]. Materials Review, 2007, 21(2): 106-108. [8]Xia X S, Chen Q, Zhao Z D, et al. Microstructure, texture and mechanical properties of coarse-grained Mg-Gd-Y-Nd-Zr alloy processed by multidirectional forging[J]. Journal of Alloys and Compounds, 2015, 623: 62-68. [9]Nie K B, Deng K K, Wang X J, et al. Multidirectional forging of AZ91 magnesium alloy and its effects on microstructures and mechanical properties[J]. Materials Science and Engineering A, 2015, 624: 157-168. [10]Lu Z D, Zhang C J, Feng H, et al. Effect of heat treatment on microstructure and tensile properties of 2vol.%TiCp/near-β Ti composite processed by isothermal multidirectional forging[J]. Materials Science and Engineering A, 2019, 761: 138064. [11]Zhao J H, Deng Y L, Zhang J, et al. Effect of temperature and strain rate on the grain structure during the multidirectional forging of the Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2019, 756: 119-128. [12]Rao P N, Singh D, Jayaganthan R. Mechanical properties and microstructural evolution of Al6061 alloy processed by multidirectional forging at liquid nitrogen temperature[J]. Materials and Design, 2014, 56: 97-104. [13]Mahjoub R, Laws K J, Stanford N, et al. General trends between solute segregation tendency and grain boundary character in aluminum-An ab into study[J]. Acta Materialia, 2018, 158: 257-268. [14]Wang Y X, Zhao G Q, Xu X, et al. Constitutive modeling, processing map establishment and microstructure analysis of spray deposited Al-Cu-Li alloy 2195[J]. Journal of Alloys and Compounds, 2019, 779: 735-751. [15]Yu W C, Li H Y, Du R, et al. Characteristic constitution model and microstructure of an Al-3.5Cu-1.5Li alloy subjected to thermal deformation[J]. Materials Characterization, 2018, 145: 53-64. [16]Yu Q Y, Yao Z H, Dong J X. Deformation and recrystallization behaviour of a coarse-grain, nickel-base superalloy Udimet720Li ingot material[J]. Materials Characterization, 2015, 107: 398-410. [17]Sitdikov O, Garipova R, Avtokratova E, et al. Effect of temperature of isothermal multidirectional forging on microstructure development in the Al-Mg alloy with nano-size aluminides of Sc and Zr[J]. Journal of Alloys and Compounds, 2018, 746: 520-531. [18]Lin Y, Zheng Z Q, Li S C, et al. Microstructures and properties of 2099 Al-Li alloy[J]. Materials Characterization, 2013, 84: 88-99. [19]Deschamps A, Garcia M, Chevy J, et al. Influence of Mg and Li content on the microstructure evolution of Al-Cu-Li alloys during long-term ageing[J]. Acta Materialia, 2017, 122: 32-46. [20]Jo H H, Hirano K I. Precipitation processes in Al-Cu-Li alloy studied by DSC[J]. Materials Science Forum, 1987, 13-14: 377-382. [21]张显峰, 李国爱, 陆 政, 等. 淬火后预拉伸对自然时效状态Al-Li合金组织和性能的影响[J]. 金属学报, 2016, 52(12): 1497-1502. Zhang Xianfeng, Li Guoai, Lu Zheng, et al. Effect of preaged stretch after quenched on the properties and microstructure of a naturally aged Al-Li alloy[J]. Acta Metallurgica Sinica, 2016, 52(12): 1497-1502. [22]Munoz M M A, Morris D G. Microstructure control during severe plastic deformation of Al-Cu-Li and the influence on strength and ductility[J]. Materials Science and Engineering A, 2011, 528(9): 3445-3454. [23]Wang Y X, Zhao G Q, Xu X, et al. Microstructures and mechanical properties of spray deposited 2195 Al-Cu-Li alloy through thermo-mechanical processing[J]. Materials Science and Engineering A, 2018, 727: 78-89. [24]Rao P N, Singh D, Brokmeier H G, et al. Effect of ageing on tensile behavior of ultrafine grained Al6061 alloy[J]. Materials Science and Engineering A, 2015, 641: 391-401. [25]Seidman D N, Marquis E A, Dunand D C. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys[J]. Acta Materialia, 2002, 50(16): 4021-4035. |