[1]乔红超, 胡宪亮, 赵吉宾, 等. 激光冲击强化的影响参数与发展应用[J]. 表面技术, 2019, 48(12): 1-9, 53. Qiao Hongchao, Hu Xianliang, Zhao Jibin, et al. Influence parameters and development application of laser shock processing[J]. Surface Technology, 2019, 48(12): 1-9, 53. [2]朱 然, 谢地辉, 朱帅光, 等. 高频率Nd∶YLF平顶激光冲击对TC6钛合金表面应力及微变形的影响[J]. 金属热处理, 2022, 47(3): 204-210. Zhu Ran, Xie Dihui, Zhu Shuaiguang, et al. Effect of high frequency Nd: YLF flat-top laser shock on surface stress and micro-defromation of TC6 titanium alloy[J]. Heat Treatment of Metals, 2022, 47(3): 204-210. [3]王 帅, 杨 阳, 花国然, 等. 激光冲击E690高强钢表面应变预测模型的建立[J]. 金属热处理, 2020, 45(10): 225-230. Wang Shuai, Yang Yang, Hua Guoran, et al. Establishment of surface strain prediction model of E690 high strength steel by laser shock processing[J]. Heat Treatment of Metals, 2020, 45(10): 225-230. [4]Wang C, Li K, Hu X, et al. Numerical study on laser shock peening of TC4 titanium alloy based on the plate and blade model[J]. Optics and Laser Technology, 2021, 142: 107163. [5]Caralapatti V K, Narayanswamy S. Analyzing the effect of high repetition laser shock peening on dynamic corrosion rate of magnesium[J]. Optics and Laser Technology, 2017, 93: 165-174. [6]曹宇鹏, 王 帅, 施卫东, 等. 激光冲击对E690高强钢激光熔覆修复微观组织的影响[J]. 光子学报, 2021, 50(4): 91-101. Cao Yupeng, Wang Shuai, Shi Weidong, et al. Effect of laser shock on microstructure of the repair layer of E690 high strength steel by laser cladding[J]. Acta Photonica Sinica, 2021, 50(4): 91-101. [7]帅仕祥, 吴俊峰, 车志刚, 等. 激光冲击强化Al7050-T7451合金紧固孔的残余应力研究[J]. 航空制造技术, 2021, 65(9): 103-109. Shuai Shixiang, Wu Junfeng, Che Zhigang, et al. Residual stresses of Al7050-T7451 alloy fastener holes with laser shock peening[J]. Aeronautical Manufacturing Technology, 2021, 65(9): 103-109. [8]张 浩, 孙志强, 曹子文, 等. 激光冲击强化对TB6钛合金微动磨损行为的影响[J]. 航空制造技术, 2021, 64(17): 78-84, 101. Zhang Hao, Sun Zhiqiang, Cao Ziwen, et al. Effect of laser shock peening on fretting wear behavior of TB6 titanium alloy[J]. Aeronautical Manufacturing Technology, 2021, 64(17): 78-84, 101. [9]李金坤, 王守仁, 王高琦, 等. 激光冲击强化对Ti6Al4V钛合金骨板表面改性与摩擦学性能的影响[J]. 中国激光, 2022, 49(2): 105-115. Li Jinkun, Wang Souren, Wang Gaoqi, et al. Effect of laser shock peening on surface modification and tribological properties of Ti6Al4V titanium alloy bone plates[J]. Chinese Journal of Lasers, 2022, 49(2): 105-115. [10]王 强, 高国强, 罗学昆. 激光喷丸与机械喷丸复合强化对2124-T851铝合金疲劳寿命的影响[J]. 表面技术, 2021, 50(4): 96-102. Wang Qiang, Gao Guoqiang, Luo Xuekun. Effect of laser shot peening and shot peening compound strengthening process on fatigue life of 2124-T851 aluminum alloy[J]. Surface Technology, 2021, 50(4): 96-102. [11]葛良辰, 花国然, 曹宇鹏, 等. 激光冲击参数对7050铝合金残余应力场的影响[J]. 金属热处理, 2020, 45(9): 81-86. Ge Liangchen, Hua Guoran, Cao Yupeng, et al. Effect of laser shocking parameters on residual stress field of 7050 aluminium alloy[J]. Heat Treatment of Metals, 2020, 45(9): 81-86. [12]孟 帅, 崔承云, 陈 凯, 等. 激光冲击高锰钢的微观组织与力学性能[J]. 电镀与涂饰, 2020, 39(12): 760-765. Meng Shuai, Cui Chengyun, Chen Kai, et al. Microstructure and mechanical properties of laser-shock-peened high-manganese steel[J]. Electropolishing and Finishing, 2020, 39(12): 760-765. [13]金成嘉, 陈炳泉, 李 纬, 等. 激光冲击对AISI430铁素体不锈钢抗蚀性影响[J]. 激光技术, 2020, 44(2): 212-216. Jin Chengjia, Chen Bingquan, Li Wei, et al. Effect of laser shock peening on corrosion resistance of AISI430 ferritic stainless steel[J]. Laser Technology, 2020, 44(2): 212-216. [14]张明扬, 朱 颖, 郭 伟, 等. 激光冲击强化对TC17钛合金高周疲劳性能的影响[J]. 激光技术, 2017, 41(2): 231-234. Zhang Mingyang, Zhu Ying, Guo Wei, et al. Effects of laser shock processing on fatigue properties of TC17 titanium alloy[J]. Laser Technology, 2017, 41(2): 231-234. [15]Lu J Z, Wu L J, Sun G F, et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiplelaser shock peening impacts[J]. Acta Materialia, 2017, 127: 252-266. [16]Wang Z D, Sun G F, Lu Y, et al. Microstructural characterization and mechanical behavior of ultrasonic impact peened and laser shock peened AISI 316L stainless steel[J]. Surface and Coatings Technology, 2020, 385: 125403. [17]Bai Y, Wang H, Wang S, et al. Life cycle strengthening of high-strength steels by nanosecond laser shock[J]. Applied Surface Science, 2021, 569: 151118. [18]Lavisse L, Kanjer A, Berger P, et al. High temperature oxidation resistance and microstructure of laser-shock peened Ti-Beta-21S[J]. Surface and Coatings Technology, 2020, 403: 126368. [19]Yella P, Venkateswarlu P, Buddu R K, et al. Laser shock peening studies on SS316LN plate with various sacrificial layers[J]. Applied Surface Science, 2018, 435: 271-280. [20]Sanchez A G, You C, Leering M, et al. Effects of laser shock peening on the mechanisms of fatigue short crack initiation and propagation of AA7075-T651[J]. International Journal of Fatigue, 2021, 143: 106025. [21]Sano Y, Obata M, Kubo T, et al. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating[J]. Materials Science and Engineering A, 2006, 417 (1): 334-340. |