[1]Bedolla-Jacuinde A, Guerra F V, Guerrero-Pastran A J, et al. Microstructural effect and wear performance of high chromium white cast iron modified with high boron contents[J]. Wear, 2021, 476(2): 203675. [2]Dogan O N, Hawk J A, Laird G. Solidification structure and abrasion resistance of high chromium white irons[J]. Metallurgical and Materials Transactions A, 1997, 28(6): 1315-1328. [3]Gawlik J, Schmidt J, Nowak T, et al. Nitrogen as an alloying element improving material properties of the high carbon cast steel for ball mill liner plates[J]. Archives of Civil and Mechanical Engineering, 2017, 17(4): 926-934. [4]许兴军, 徐 利, 徐 胜, 等. 一种高碳耐磨钢球的制备方法: 中国, 202010150567. 2[P]. 2020-06-09. [5]卓城之, 高 丽, 顾炜华, 等. Nb-V微合金化高碳钢在弹性盖板针布用钢丝上的运用[J]. 金属热处理, 2022, 47(1): 69-72. Zhuo Chengzhi, Gao Li, Gu Weihua, et al. Application of Nb-V microalloyed high carbon steel in steel wire for flexible flat-top card clothing[J]. Heat Treatment of Metals, 2022, 47(1): 69-72. [6]吉 光, 高秀华, 龙金花. 微合金元素Nb对高碳合金钢动态再结晶行为的影响[J]. 金属热处理, 2021, 46(8): 26-30. Ji Guang, Gao Xiuhua, Long Jinhua. Effect of microalloying element niobium on dynamic recrystallization behavior of high carbon alloy steel[J]. Heat Treatment of Metals, 2021, 46(8): 26-30. [7]Tsuzaki K, Sato E, Furimoto S, et al. Formation of an (α+θ) microduplex structure without thermomechanical processing in superplastic ultrahigh carbon steels[J]. Scripta Materialia, 1999, 40(6): 675-681. [8]石淑琴, 谷南驹, 古原忠, 等. 铝元素抑制超高碳钢中网状碳化物析出机理[J]. 材料热处理学报, 2005, 26(4): 79-82. Shi Shuqin, Gu Nanju, Gu Yuanzhong, et al. Mechanism of network carbide precipitation inhibited by aluminum in ultra-high carbon steel[J]. Transactions of Materials and Heat Treatment, 2005, 26(4): 79-82. [9]Liu K P, Dun X L, Lai J P, et al. Effects of modification on microstructure and properties of ultrahigh carbon (1.9wt.%C) steel[J]. Materials Science & Engineering, 2011, 528(28): 8263-8268. [10]董子尧, 王 睿, 康 燕, 等. 高温均匀化处理对1.3C-5Cr-0.7Mo-0.6V钢中碳化物形貌及力学性能的影响[J]. 金属热处理, 2020, 45(12): 69-75. Dong Ziyao, Wang Rui, Kang Yan, et al. Effect of high temperature homogenization on carbide morphology and mechanical properties of 1.3C-5Cr-0.7Mo-0.6V steel[J]. Heat Treatment of Metals, 2020, 45(12): 69-75. [11]He B B. On the factors governing austenite stability: Intrinsic versus extrinsic[J]. Materials, 2020, 13(15): 3440. [12]Poddar D, Ghosh C, Bhattacharya B, et al. Development of high ductile ultra high strength structural steel through stabilization of retained austenite and stacking fault[J]. Materials Science and Engineering A, 2019, 762: 138079. [13]Wiewiórowska S. The influence of strain rate and strain intensity on retained austenite content in structure of steel with TRIP effect[J]. Solid State Phenomena, 2010, 165: 216-220. [14]田敬成, 孙艳波, 滕敦波, 等. 高强Q&P钢中残留奥氏体的TRIP行为[J]. 金属热处理, 2019, 44(7): 169-172. Tian Jingcheng, Sun Yanbo, Teng Dunbo, et al. TRIP effect of retained austenite in high strength Q&P steel[J]. Heat Treatment of Metals, 2019, 44(7): 169-172. [15]Tsuchiyama T, Amano Y, Uranaka S, et al. Effect of initial austenite grain size on microstructure development and mechanical properties in a medium-carbon steel treated with one-step quenching and partitioning: Special issue on “advances in TRIP effect research”[J]. ISIJ International, 2021, 61(2): 537-545. |