[1]Li Jiazhi, Ding Hua, Li Baomian, et al. Effect of Cr and Sn additions on microstructure, mechanical-electrical properties and softening resistance of Cu-Cr-Sn alloy[J]. Materials Science and Engineering A, 2021, 802(1): 140628. [2]李明茂, 张乐清, 王文静. 微量铪对铜及铜铬合金组织及性能的影响[J]. 金属热处理, 2018, 43(8): 23-30. Li Mingmao, Zhang Leqing, Wang Wenjing. Effect of trace hafnium on microstructure and properties of Cu and Cu-Cr alloys[J]. Heat Treatment of Metals, 2018, 43(8): 23-30. [3]雷 前, 杨一海, 肖 柱, 等. 高强高导高耐热铜合金的研究进展与展望[J]. 材料导报, 2021, 35(15): 15153-15161. Lei Qian, Yang Yihai, Xiao Zhu, et al. Research progress and prospect on high strength, high conductivity, and high heat resistance copper alloys[J]. Materials Reports, 2021, 35(15): 15153-15161. [4]范俊玲, 郑 磊. 热处理对Cu-0.4Co-0.2Ni-0.2Sn铜合金组织与性能的影响[J]. 金属热处理, 2019, 44(9): 173-176. Fan Junling, Zheng Lei. Effect of heat treatment on microstructure and properties of Cu-0.4Co-0.2Ni-0.2Sn alloy[J]. Heat Treatment of Metals, 2019, 44(9): 173-176. [5]Cheng B, Wang L, Sprouster D J, et al. Tailoring microstructure in sintered Cu-Cr-Nb-Zr alloys for fusion components[J]. Journal of Nuclear Materials, 2021, 551: 152956. [6]范俊玲, 曹 军, 郑 磊. 热处理对大变形冷加工Cu-0.4Co-0.2Ni-0.2Sn铜合金性能的影响[J]. 金属热处理, 2019, 44(8): 165-168. Fan Junling, Cao Jun, Zheng Lei. Effect of heat treatment on properties of Cu-0.4Co-0.2Ni-0.2Sn copper alloy with large deformation cold working[J]. Heat Treatment of Metals, 2019, 44(8): 165-168. [7]Liu Jia, Wang Xianhui, Chen Jian, et al. The effect of cold rolling on age hardening of Cu-3Ti-3Ni-0.5Si alloy[J]. Journal of Alloys and Compounds, 2019, 797: 370-379. [8]马玉霞, 党淑娥, 陈慧琴. 固溶处理对Cu-Cr-Zr合金组织与性能的影响[J]. 金属热处理, 2022, 47(1): 163-166. Ma Yuxia, Dang Shue, Chen Huiqin. Effect of solution treatment on microstructure and properties of Cu-Cr-Zr alloy[J]. Heat Treatment of Metals, 2022, 47(1): 163-166. [9]Chen Wei, Hu Xiaona, Guo Wei, et al. Effects of C addition on the microstructures of as-cast Cu-Fe-P alloys[J]. Materials, 2019, 12(17): 2772. [10]Chen Jinshui, Wang Junfeng, Xiao Xiangpeng, et al. Contribution of Zr to strength and grain refinement in CuCrZr alloy[J]. Materials Science and Engineering A, 2019, 756: 464-473. [11]陈金水, 王俊峰, 朱明彪, 等. Cu-Cr-Zr系合金中Zr含量对初生相的影响[J]. 金属热处理, 2018, 43(7): 20-27. Chen Jinshui, Wang Junfeng, Zhu Mingbiao, et al. Effect of Zr content on primary phase in Cu-Cr-Zr alloy[J]. Heat Treatment of Metals, 2018, 43(7): 20-27. [12]Xiao Xiangpeng, Yi Zhiyong, Chen Tingting, et al. Suppressing spinodal decomposition by adding Co into Cu-Ni-Si alloy[J]. Journal of Alloys and Compounds, 2016, 660: 178-183. [13]陈青林, 王智祥, 张燕杰, 等. 形变对Cu-2.3Ni-0.7Si-0.7Co合金时效析出过程及性能的影响[J]. 有色金属工程, 2019, 9(12): 9-14. Chen Qinlin, Wang Zhixiang, Zhang Yanjie, et al. Effect of deformation on ageing precipitation process and properties of Cu-2.3Ni-0.7Si-0.7Co alloy[J]. Nonferrous Metals Engineering, 2019, 9(12): 9-14. [14]刘 峰, 李正方, 郑利明, 等. 引线框架用Cu-Sn-Ni-P合金抗软化性能的研究[J]. 热加工工艺, 2016, 45(22): 63-66, 69. Liu Feng, Li Zhengfang, Zheng Liming, et al. Study on softening resistance performance of Cu-Sn-Ni-P alloy for lead frame[J]. Hot Working Technology, 2016, 45(22): 63-66, 69. [15]张文芹, 张 斌. Cu-Ni-Sn-P合金的耐热性能研究[J]. 铜业工程, 2019(3): 12-15. Zhang Wenqin, Zhang Bin. Research on heat resistance of Cu-Ni-Sn-P alloy[J]. Copper Engineering, 2019(3): 12-15. [16]Hu Te, Chen Wanglin, Yan Ning, et al. On the morphology and crystallography of the strengthening precipitates in an aged Cu-Ni-P alloy[J]. Journal of Alloys and Compounds, 2017, 729: 84-88. [17]Guo Chenjun, Shi Yufan, Chen Jinshui, et al. Effects of P addition on spinodal decomposition and discontinuous precipitation in Cu-15Ni-8Sn alloy[J]. Materials Characterization, 2020, 171(5): 110760. [18]Nishijima F, Nomura K, Watanabe C, et al. Investigation on stress relaxation behavior in Cu-Ni-Sn-P alloys[J]. Journal of the Japan Institute of Metals, 2008, 72(6): 427-432. [19]揭 晓, 钟强强, 李 钊, 等. Sn添加对Cu-3Ni-0.75Si-0.1Mg合金高温抗软化性能的影响及其机理[J]. 材料热处理学报, 2021, 42(5): 32-42. Jie Xiao, Zhong Qiangqiang, Li Zhao, et al. Effect of Sn addition on high temperature softening resistance of Cu-3Ni-0.75Si-0.1Mg alloy and its mechanism[J]. Transactions of Materials and Heat Treatment, 2021, 42(5): 32-42. [20]赵建平, 曹规循. 非晶晶化法制备纳米晶Cu-Ni-Sn-P合金[J]. 科学通报, 1994, 39(17): 1581-1583. Zhao Jianping, Cao Guixun. Nanocrystalline Cu-Ni-Sn-P alloy was prepared by amorphous crystallization method[J]. Chinese Science Bulletin, 1994, 39(17): 1581-1583. |