[1]Inagaki I, Takechi T, Shirai Y, et al. Application and features of titanium for the aerospace industry[C]//Nippon Steel and Sumitomo Metal Technical Report, 2014, 106: 22-27. [2]Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering A, 1996, 213(1/2): 103-114. [3]Singh P, Pungotra H, Kalsi N S. On the characteristics of titanium alloys for the air-craft applications[C]//Mater Today Proc 4. 2017: 8971-8982. [4]Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117: 371-392. [5]Frazier W E. Metal additive manufacturing: A review[J]. Journal of Materials Engineering and Performance, 2014, 23 (6): 1917-1928. [6]Guo N, Leu M C. Additive manufacturing: technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8 (3): 215-243. [7]Shipley H, Mcdonnell D, Culleton M, et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review[J]. International Journal of Machine Tools and Manufacture, 2018, 128: 1-20. [8]林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术[J]. 中国材料进展, 2015, 34(9): 684-688. Lin Xin, Huang Weidong. High performance metal additive manufacturing technology applied in aviation field[J]. Materials China, 2015, 34(9): 684-688. [9]Brandt M, Sun J S, Leary M, et al. High-value SLM aerospace components: from design to manufacture[J]. Advanced Materials Research, 2013, 633: 135-147. [10]Fan Z C, Feng H W. Study on selective laser melting and heat treatment of Ti-6Al-4V alloy[J]. Results in Physics, 2018, 10(5): 660-664. [11]刘 伟, 李 能, 周 标, 等. 应用于航空领域的金属高性能增材制造技术[J]. 机械工程学报, 2019, 55(20): 128-159. Liu Wei, li Neng, Zhou Biao, et al. Progress in additive manufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering, 2019, 55(20): 128-159. [12]张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2): 122-128. Zhang Xuejun, Tang Siyi, Zhao Hengyue, et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44(2): 122-128. [13]胡富国, 柯林达, 肖美立, 等. 激光选区熔化成形Ti6Al4V合金的热处理组织演变机理[J]. 上海航天, 2019, 36(2): 96-103. Hu Fuguo, Ke Linda, Xiao Meili, et al. Heat treatment microstructural evolution of selective laser melting Ti6Al4V alloy[J]. Aerospace Shanghai, 2019, 36(2): 96-103. [14]陈志茹, 计 霞, 楚瑞坤, 等. 热处理工艺对激光熔化沉积TC4钛合金组织性能的影响[J]. 金属热处理, 2018, 43(11): 144-149. Chen Zhiru, Ji Xia, Chu Ruikun, et al. Effect of heat treatment on microstructure and properties of TC4 titanium alloy by laser melting deposition[J]. Heat Treatment of Metals, 2018, 43(11): 144-149. [15]鲁媛媛, 张 怡, 郭 帅, 等. 固溶温度对3D打印TC4 钛合金显微组织和力学性能的影响[J]. 金属热处理, 2020, 45(11): 171-176. Lu Yuanyuan, Zhang Yi, Guo Shuai, et al. Influence of solution treatment temperature on microstructure and mechanical properties of TC4 titanium alloy prepared by 3D printing[J]. Heat Treatment of Metals, 2020, 45(11): 171-176. [16]杨 光, 王 斌, 钦兰云, 等. 激光和电弧增材制造TC4钛合金组织和性能研究[J]. 稀有金属, 2018, 42(9): 903-908. Yang Guang, Wang Bin, Qin Lanyun, et al. Microstructure and properties of TC4 titanium alloy by laser deposition and wire and arc additive manufacturing[J]. Chinese Journal of Rare Metals, 2018, 42(9): 903-908. [17]任永明, 林 鑫, 黄卫东. 增材制造 Ti-6Al-4V 合金组织及疲劳性能研究进展[J]. 稀有金属材料与工程, 2017, 46(10): 3160-3168. Ren Yongming, Lin Xin, Huang Weidong. Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy[J]. Rare Metal Materials and Engineering, 2017, 46(10): 3160-3168. [18]吕周晋, 李好峰, 车立达, 等. HIP温度对SLM制备TC4钛合金组织和力学性能的影响[J]. 金属热处理, 2022, 47(6): 138-142. Lü Zhoujin, Li Haofeng, Che Lida, et al. Effect of HIP temperature on microstructure and mechanical properties of TC4 titanium alloy prepared by SLM[J]. Heat Treatment of Metals, 2022, 47(6): 138-142. [19]Punit K A, Om P B, Upadrasta R. Micro- and meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V[J]. Acta Materialia, 2018, 154: 246-260. [20]《航空发动机设计用材料数据手册》编委会编. 《航空发动机设计用材料数据手册》(第3册)[M]. 北京: 航空工业出版社, 2008. [21]吴圣川, 胡雅楠, 杨冰, 等. 增材制造材料缺陷表征及结构完整性评定方法研究综述[J]. 机械工程学报, 2021, 57(22): 3-34. Wu Shengchuan, Hu Yanan, Yang Bing, et al. Review on defect characterization and structural integrity assessment method of additively manufactured materials[J]. Journal of Mechanical Engineering, 2021, 57(22): 3-34. [22]钦兰云, 吴佳宝, 王 伟, 等. 激光增材制造Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V钛合金组织与疲劳性能研究[J]. 中国激光, 2020, 47(17): 1002008. Qin Linyun, Wu Jiabao, Wang Wei, et al. Microstructures and fatigue properties of Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V Titanium alloy fabricated using laser deposition manufacturing[J]. Chinese Journal of Lasers, 2020, 47(17): 1002008. |