[1]孙红亮, 黄泽文, 朱德贵. 热处理对Ti-44Al-4Nb-4Zr-1B合金组织和性能的影响[J]. 热加工工艺, 2013, 42(2): 187-189, 192. Sun Hongliang, Huang Zewen, Zhu Degui. Effects of heat treatment on microstructure and mechanical properties of Ti-44Al-4Nb-4Zr-1B alloy[J]. Hot Working Technology, 2013, 42(2): 187-189, 192. [2]Tetsui T. Development of a TiAl turbocharger for passenger vehicles[J]. Materials Science and Engineering A, 2002, 329-331: 582-588. [3]田素贵, 吕晓霞, 于慧臣, 等. 铸态TiAl-Nb合金的组织结构与蠕变性能[J]. 稀有金属材料与工程, 2016, 45(11): 2835-2840. Tian Sugui, Lü Xiaoxia, Yu Huichen, et al. Microstructure and creep behavior of as-cast TiAl-Nb alloy[J]. Rare Metal Materials and Engineering, 2016, 45(11): 2835-2840. [4]张树志. Ti-46Al-2Cr-4Nb-0.3Y合金高温流变行为及加工图研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. Zhang Shuzhi. Study on hot deformation behavior and processing map of Ti-46Al-2Cr-4Nb-0.3Y alloy[D]. Harbin: Harbin Institute of Technology, 2009. [5]Zhang W J, Evangelista E, Francesconi L. Effect of prior cooling rate on the grain size of fully-lamellar TiAl-base alloy developed by tempering/quenching[J]. Scripta Materialia, 1996, 35(1): 41-45. [6]何双珍. 热处理细化铸态TiAl基合金显微组织的研究[D]. 长沙: 中南大学, 2003. He Shuangzhen. Study on microstructure refinement of as-cast TiAl base alloy by heat treatment[D]. Changsha: Central South University, 2003. [7]孙 涛, 王 清, 耿 明, 等. TiAl合金片层组织的形成与细化工艺及其机理研究[J]. 材料热处理学报, 2009, 30(2): 96-100. Sun Tao, Wang Qing, Geng Ming, et al. Study on procedure and mechanism of formation and refinementof lamellar structure in a TiAl alloy[J]. Transactions of Materials and Heat Treatment, 2009, 30(2): 96-100. [8]Imayev R, Salishchev G, Senkov O, et al. Low-temperature superplasticity of titanium aluminides[J]. Materials Science and Engineering A, 2001, 300(1/2): 263-277. [9]Imayev V, Imayev R, Kuznetsov A, et al. Superplastic properties of Ti-45.2Al-3.5(Nb, Cr, B) sheet material rolled below the eutectoid temperature[J]. Materials Science and Engineering A, 2003, 348(1/2): 15-21. [10]陈玉勇, 杨 非, 孔凡涛, 等. TiAl合金的热加工、组织和性能[J]. 中国材料进展, 2010, 29(3): 12-17. Chen Yuyong, Yang Fei, Kong Fantao, et al. Processing, microstructure and properties of TiAl alloy[J]. Materials China, 2010, 29(3): 12-17. [11]Chen L, Lin J P, Xu X J, et al. Microstructure refinement via martensitic transformation in TiAl alloys[J]. Journal of Alloys and Compounds, 2018, 741: 1175-1182. [12]Hu D, Jiang H. Martensite in a TiAl alloy quenched from beta phase field[J]. Intermetallics, 2015, 56: 87-95. [13]Cheng L, Zhang S J, Yang G, et al. Tailoring microstructure and mechanical performance of a β-solidifying TiAl alloy via martensitic transformation[J]. Materials Characterization, 2021, 173: 110970. [14]Cheng L, Chen Y, Yang G, et al. Hot deformation behavior of a Ti-40Al-10V alloy with quenching-tempering microstructure[J]. Materials, 2018, 11(6): 872. [15]严 犇. CoCrFeNiAl0.1RE高熵合金热变形行为研究[D]. 镇江: 江苏科技大学, 2019. Yan Ben. Hot deformation behaviors of CoCrFeNiAl0.1RE high-entropy alloy[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019. [16]张雪敏, 曹福洋, 岳红彦, 等. TC11钛合金热变形本构方程的建立[J]. 稀有金属材料与工程, 2013, 42(5): 937-941. Zhang Xuemin, Cao Fuyang, Yue Hongyan, et al. Establishment of constitutive equations of TC11 alloy during hot deformation[J]. Rare Metal Materials and Engineering, 2013, 42(5): 937-941. [17]Ge Gengwu, Wang Zeming, Zhang Laiqi, et al. Hot deformation behavior and artificial neural network modeling of β-γ TiAl alloy containing high content of Nb[J]. Materials Today Communications, 2021, 27: 102405. [18]林 潇, 张清东. HC1150/1400MS马氏体钢的高温本构模型[J]. 金属热处理, 2017, 42(10): 197-202. Lin Xiao, Zhang Qingdong. Constitutive model of HC1150/1400MS martensitic steel at high temperature[J]. Heat Treatment of Metals, 2017, 42(10): 197-202. [19]程 亮. 高铌TiAl合金超塑性力学行为及变形机制研究[D]. 西安: 西北工业大学, 2016. Cheng Liang. Superplastic mechanical behavior and deformation mechanisms for high Nb containing TiAl alloys[D]. Xi'an: Northwestern Polytechnical University, 2016. [20]Kong F T, Chen Y Y, Li B H. Influence of yttrium on the high temperature deformability of TiAl alloys[J]. Materials Science and Engineering A, 2009, 499(1/2): 53-57. |