[1]Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187(4740): 869-870. [2]汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5): 177-351. Wang Weihua. The nature and properties of amorphous matter[J]. Progress in Physics, 2013, 33(5): 177-351. [3]Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys—Science direct[J]. Acta Materialia, 2007, 55(12): 4067-4109. [4]Turnbull D. Under what conditions can a glass be formed[J]. Contemporary Physics, 1969, 10(5): 473-488. [5]Spaepen F, Turnbull D. A mechanism for the flow and fracture of metallic glasses[J]. Scripta Metallurgica, 1974, 8(5): 563-568. [6]Argon A S. Plastic deformation in metallic glasses[J]. Acta Metallurgica, 1979, 27(1): 47-58. [7]Hays C C, Kim C P, Johnson W L. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions[J]. Physical Review Letters, 2000, 84(13): 2901-2904. [8]Szuecs F, Kim C, Johnson W. Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite[J]. Acta Materialia, 2001, 49(9): 1507-1513. [9]Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008, 451(7182): 1085-1089. [10]Hofmann D C, Suh J Y, Wiest A, et al. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility[J]. Nature Letters, 2008, 105(51): 20136-20140. |