[1]李运刚, 马 涛, 李慧蓉, 等. Fe-Mn-Al-C低密度钢强化机制与拉伸性能研究进展及Nb微合金化展望[J]. 材料导报, 2020, 34(23): 158-168. Li Yungang, Ma Tao, Li Huirong, et al. Progress on strengthening mechanism and tensile properties of Fe-Mn-Al-C low density steel and prospect of Nb microalloying[J]. Materials Reports, 2020, 34(23): 158-168. [2]康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁, 2008, 43(6): 1-7. Kang Yonglin. Lightweight vehicle, advanced high strength steel and energy saving and emission reduction[J]. Steel, 2008, 43(6): 1-7. [3]Senuma T. Physical metallurgy of modern high strength steel sheets[J]. ISIJ International, 2001, 41(6): 520-532. [4]Jin W, Da S B, Liang C, et al. The microstructure and formability study on DP Steel of lightweight automobile[J]. Materials Science Forum, 2012, 704-705: 1465-1472. [5]Tasan C C, Diehl M, Yan D, et al. An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design[J]. Annual Review of Materials Research, 2015, 45(1): 391-431. [6]Emil E, Ján K, Katarína B, et al. The prediction of the mechanical properties for dual-phase high strength steel grades based on microstructure characteristics[J]. Metals, 2018, 8(4): 242. [7]Kuziak R, Kawalla R, Waengler S. Advanced high strength steels for automotive industry[J]. Archives of Civil and Mechanical Engineering, 2008, 8(2): 103-117. [8]Koh-Ichi S, Akihiko N, Mitsuyuki K, et al. Effects of retained austenite parameters on warm stretch-flangeability in TRIP-aided dual-phase sheet steels[J]. ISIJ International, 2007, 39(1): 56-63. [9]Chiang J, Lawrence B, Boyd J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels[J]. Materials Science and Engineering A, 2011, 528(13): 4516-4521. [10]Bhargava M, Chakrabarty S, Barnwal V K, et al. Effect of microstructure evolution during plastic deformation on the formability of transformation induced plasticity and quenched and partitioned AHSS[J]. Materials & Design, 2018, 152: 65-77. [11]Dai Z, Chen H, Yang Z G, et al. Fundamentals and application of solid-state phase transformations for advanced high strength steels containing metastable retained austenite[J]. Materials Science and Engineering R, 2021, 143: 1-39. [12]Thiessen R G, Paul G, Sebald R. Relationship between microstructure and mechanical properties in Q&P-steels[J]. Materials Science Forum, 2017, 879: 1933-1938. [13]Speer J, Matlock D K, Cooman B, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [14]詹 华, 冷德平, 潘红波, 等. Nb对0.2C-1.5Si-1.8Mn淬火配分钢组织和力学性能的影响[J]. 金属热处理, 2020, 45(3): 73-77. Zhan Hua, Leng Deping, Pan Hongbo, et al. Influence of Nb on microstructure and mechanical properties of 0.2C-1.5Si-1.8Mn quenching and partitioning steel[J]. Heat Treatment of Metals, 2020, 45(3): 73-77. [15]付立铭, 单爱党, 王 巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响[J]. 金属学报, 2010, 46(7): 832-837. Fu Liming, Shan Aidang, Wang Wei. Effect of Nb solute drag and NbC precipitation pinning on the recrystallization grain growth in low carbon Nb-microalloyed steel[J]. Acta Metallurgica Sinica, 2010, 46(7): 832-837. [16]Wang C Y, Shi J, Cao W Q, et al. Characterization of microstructure obtained by quenching and partitioning process in low alloymartensitic steel[J]. Materials Science and Engineering A, 2010, 527(15): 3442-3449. [17]Su Y Y, Chiu L H, Chuang T L, et al. Retained austenite amount determination comparison in JISSKD11 steel using quantitative metallography and X-Ray diffraction methods[J]. Advanced Materials Research, 2012, 482-484: 1165-1168. [18]YB/T 5338—2006, 钢中残余奥氏体定量测定X射线衍射仪法[S]. [19]Zheng C, Raabe D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model[J]. Acta Materialia, 2013, 61(14): 5504-5517. |