[1]金荣植. 常用Cr-Ni-Mo系钢齿轮的热处理工艺[J]. 金属加工(热加工), 2014(5): 26-27, 20, 22, 24. [2]王爱香, 高金柱, 顾 敏. 新型高合金齿轮渗碳钢17CrNiMo6的热处理[J]. 金属热处理, 2010, 35(10): 82-86. Wang Aixiang, Gao Jinzhu, Gu Min. Heat treatment of new type high alloy carburizing gear steel 17CrNiMo6[J]. Heat Treatment of Metals, 2010, 35(10): 82-86. [3]George Krauss. Solidification, segregation, and banding in carbon and alloy steels[J]. Metallurgical and Materials Transactions B, 2003, 34(6): 781-792. [4]Yang Chao, Min Yongan, Sun Hongping, et al. Study of identifying the banded structure of 8620 steel bars[J]. Advanced Materials Research, 2014, 915-916: 643-649. [5]Eric D I, Jagle A. Modelling of microstructural banding during transformations in steel[D]. London: University of Cambridge, 2007. [6]徐尚呈, 周立新, 雷应华, 等. G20CrNi2MoA带状组织的形成机制及消除方法[J]. 物理测试, 2012, 30(5): 18-22. Xu Shangcheng, Zhou Lixin, Lei Yinghua, et al. G20CrNi2MoA banded structure formation mechanism and methods to eliminate[J]. Physics Examination and Testing, 2012, 30(5): 18-22. [7]曹杰瑞, 徐文博, 闫来平, 等. 18CrNiMo7-6齿轮钢一次带状组织特征[J]. 金属热处理, 2019, 44(3): 16-21. Cao Jierui, Xu Wenbo, Yan Laiping, et al. As-cast banded structure characteristics of 18CrNiMo7-6 gear steel[J]. Heat Treatment of Metals, 2019, 44(3): 16-21. [8]赵永杰. 18CrNiMo7-6钢锭凝固组织优化技术研究[D]. 大连: 大连理工大学, 2019. Zhao Yongjie. Optimization technology of solidification structure of 18CrNiMo7-6 steel ingot[D]. Dalian: Dalian University of Technology, 2019. [9]张延玲, 刘海英, 阮小江, 等. 中低碳齿轮钢中合金元素的偏析行为及其对带状组织的影响[J]. 北京科技大学学报, 2009, 31(S1): 199-206. Zhang Yanling, Liu Haiying, Ruan Xiaojiang, et al. Microsegregation behaviors of alloy elements and their effects on the formation of banded structure in pinion steels[J]. Journal of University of Science and Technology Beijing, 2009, 31(S1): 199-206. [10]孙晓冉, 丁 辉, 孙 岩, 等. 冷却速度对抽油杆用NiCrMnMoV钢过冷奥氏体转变的影响[J]. 金属热处理, 2019, 44(11): 163-166. Sun Xiaoran, Ding Hui, Sun Yan, et al. Effect of cooling rate on supercooled austenite transformation of NiCrMnMoV steel for sucker rod[J]. Heat Treatment of Metals, 2019, 44(11): 163-166. [11]Grossterlinden R, Kawalla R, Lotter U. Formation of pearlitic banded structures in ferritic-pearlitic steels[J]. Steel Research, 1992, 63(8): 331. [12]Thompson W S, Howell R P. Factors influencing ferrite/pearlite banding and origin of large pearlite nodules in a hypoeutectoid plate steel[J]. Materials Science and Technology, 1992(8): 777. [13]Kirkaldy J S, Destinonforstmann J V, Brigham R J. Simulation of banding in steels[J]. Canadian Metallurgical Quarterly, 1962(1): 59. [14]Zhao Yina, Chen Yinli, Wei He, et al. The role of elements partition and austenite grain size in the ferrite-bainite banding formation during hot rolling[J]. Materials, 2021, 14(9): 2356. [15]王晓敏. 工程材料学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2005: 6-10. [16]蔡 珍, 黄运华, 张 跃, 等. 冷却速度对铁素体-珠光体带状组织的影响机制[J]. 钢铁研究学报, 2012, 24(6): 25-30. Cai Zhen, Huang Yunhua, Zhang Yue, et al. Mechanism of effect of cooling rate on ferrite/pearlite banded structure[J]. Journal of Iron and Steel Research, 2012, 24(6): 25-30. [17]杨少朋, 尉文超, 胡芳忠, 等. 低碳齿轮钢18CrNiMo7-6奥氏体晶粒度长大规律[J]. 材料导报, 2021, 35(8): 8179-8183. Yang Shaopeng, Yu Wenchao, Hu Fangzhong, et al. The austenite grain growth behavior of low carbon gear steel 18CrNiMo7-6[J]. Materials Reports, 2021, 35(8): 8179-8183. [18]章守华. 合金钢[M]. 北京: 冶金工业出版社, 1981: 1-8. [19]刘鑫刚, 聂绍珉, 任运来. Cr-Mo系低合金钢锻前高温扩散工艺的实验研究[J]. 塑性工程学报, 2007(5): 141-144. Liu Xingang, Nie Shaomin, Ren Yunlai. Experimental study on diffusion annealing before forging of Cr-Mo low-alloy steel[J]. Journal of Plasticity Engineering, 2007(5): 141-144. [20]方鸿生, 徐平光, 白秉哲, 等. 一种新的复相组织—仿晶界型铁素体/粒状贝氏体[J]. 金属热处理, 2000, 25(11): 1-5. Fang Hongsheng, Xu Pingguang, Bai Bingzhe, et al. A new duplex microstructure-grain boundary allotriomorphic ferrite/granular bainite[J]. Heat Treatment of Metals, 2000, 25(11): 1-5. |