[1]Zhang J Y, Ma M Y, Shen F H, et al. Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al-Mg-Si alloy cables[J]. Materials Science and Engineering A, 2018, 710: 27-37. [2]Shamas U D, Kamran J, Hasan B A, et al. Effect of thermo mechanical treatments and aging parameters on mechanical properties of Al-Mg-Si alloy containing 3wt% Li[J]. Materials and Design, 2014, 64: 366-373. [3]崔忠圻, 刘北兴. 金属学与热处理原理[M]. 3版. 哈尔滨: 哈尔滨工业大学出版社, 2007. [4]吉 光, 高秀华, 龙金花. 微合金元素Nb对高碳合金钢动态再结晶行为的影响[J]. 金属热处理, 2021, 46(8): 26-29. Ji Guang, Gao Xiuhua, Long Jinhua. Effect of microalloying element niobium on dynamic recrystallization behavior of high carbon alloy steel[J]. Heat Treatment of Metals, 2021, 46(8): 26-29. [5]Zhang J Y, Wang H X, Yi D Q, et al. Comparative study of Sc and Er addition on microstructure, mechanical properties, and electrical conductivity of Al-0.2Zr-based alloy cables[J]. Materials Characterization, 2018, 145: 126-134. [6]Vo N Q, Dunand D C, Seidman D N. Improving aging and creep resistance in a dilute Al-Sc alloy by microalloying with Si, Zr and Er[J]. Acta Materialia, 2014, 63: 73-85. [7]张德芬, 谭 盖, 刘 璐, 等. 热处理对6061铝合金组织与性能的影响[J]. 金属热处理, 2015, 40(11): 184-187. Zhang Defen, Tan Gai, Liu Lu, et al. Effect of heat treatment on microstructure and mechanical properties of 6061 aluminum alloy[J]. Heat Treatment of Metals, 2015, 40(11): 184-187. [8]Murayama M, Hono K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys[J]. Acta Materialia, 1999, 47(5): 1537-1548. [9]Lee Y C, Hwang E, Shih Y P. A combined approach to fuzzy model identification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24(5): 736-744. [10]刘 伟, 刘 巍, 邹文杰, 等. 不同热处理状态Al-Mg-Si合金的热压缩力学行为及微观组织[J]. 金属热处理, 2021, 46(2): 168-172. Liu Wei, Liu Wei, Zou Wenjie, et al. Hot compression mechanical behavior and microstructure of Al-Mg-Si alloy with different heat treatments[J]. Heat Treatment of Metals, 2021, 46(2): 168-172. [11]Jonas J J, Sellars C M, Tegart W J M, et al. Strength and structure under hot-working conditions[J]. International Materials Reviews, 2013, 14(1): 1-24. [12]戚运莲, 曾立英, 张思远, 等. β-CEZ钛合金热变形行为及热加工工艺[J]. 金属热处理, 2018, 43(3): 45-49. Qi Yunlian, Zeng Liying, Zhang Siyuan, et al. Hot deformation behavior and thermo-mechanical processing of β-CEZ titanium alloy[J]. Heat Treatment of Metals, 2018, 43(3): 45-49. [13]刘海军, 张治民, 徐 健, 等. 等离子烧结态TC4钛合金热变形行为及本构模型研究[J]. 塑性工程学报, 2019, 26(6): 263-270. Liu Haijun, Zhang Zhimin, Xu Jian, et al. Study on hot deformation behavior and constitutive model of SPSed TC4 titanium alloy[J]. Journal of Plasticity Engineering, 2019, 26(6): 263-270. [14]Prasad Y V. Hot Working Guide: A Compendium of Processing Maps[M]. Almere: ASM International, 1997. [15]包张飞, 唐丽娜, 吴杏苹, 等. 2195铝锂合金的热变形行为[J]. 金属热处理, 2021, 46(8): 144-149. Bao Zhangfei, Tang Lina, Wu Xinping, et al. Hot deformation behavior of 2195 aluminum-lithium alloy[J]. Heat Treatment of Metals, 2021, 46(8): 144-149. [16]骆浩东. BFe30-1-1合金热变形行为及热加工图[D]. 兰州: 兰州理工大学, 2017. [17]李超帅. 纯钼的高温热变形行为与交叉轧制研究[D]. 沈阳: 东北大学, 2014. [18]Prasad Y, Rao K P. Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: Anisotropy of hot workability[J]. Materials Science and Engineering A, 2008, 487(1/2): 316-327. |