[1]范 叶, 杨沿平, 孟先春, 等. 汽车轻量化技术及其实施途径[J]. 环保风向, 2006(7): 40-42. Fan Ye, Yang Yanping, Meng Xianchun, et al. Automobile lightweight technology and its implementation[J]. Environmental Protection Wind Direction, 2006(7): 40-42. [2]鲁春艳. 汽车轻量化技术的发展现状及其实施途径[J]. 上海汽车, 2007(6): 28-31. Lu Chunyan. Development status and implementation of automobile lightweight technology[J]. Shanghai Automobile, 2007(6): 28-31. [3]周志明, 罗天星, 周昆凤, 等. 基于Forge的空心齿轮轴毛坯旋锻工艺优化[J]. 锻压技术, 2018, 43(4): 27-32. Zhou Zhiming, Luo Tianxing, Zhou Kunfeng, etal. Optimization on rotary forging process of hollow gear shaft based on Forge[J]. Forging and Stamping Technology, 2018, 43(4): 27-32. [4]傅志强, 潘宏伟, 陈广志, 等. 40CrNiMo钢齿轮轴断裂原因分析[J]. 金属热处理, 2011, 36(S1): 376-378. Fu Zhiqiang, Pan Hongwei, Chen Guangzhi, et al. Failure analysis of 40CrNiMo steel gear shaft[J]. Heat Treatment of Metals, 2011, 36(S1): 376-378. [5]侯 婷, 雷晓娟, 贾 舒. 变速器齿轮轴校直断裂失效分析[J]. 金属热处理, 2016, 41(2): 206-207. Hou Ting, Lei Xiaojuan, Jia Shu. Failure analysis on transmission gear wheel axis in straightening process[J]. Heat Treatment of Metals, 2016, 41(2): 206-207. [6]刘会芳, 马吉忠. 变速箱机械齿轮轴的断裂分析[J]. 内燃机与配件, 2019(10): 114-115. Liu Huifang, Ma Jizhong. Analysis of fracture failure of mechanical gear shaft[J]. Internal Combustion Engines and Accessories, 2019(10): 114-115. [7]银俊鹰, 赵勇桃. 汽车变速箱齿轮轴断裂失效分析研究[J]. 铸造技术, 2018, 39(10): 2398-2400. Yin Junying, Zhao Yongtao. Fracture failure analysis of automobile transmission gear shaft[J]. Foundry Technology, 2018, 39(10): 2398-2400. [8]史秋月, 颜士杰, 马冬威. 发动机齿轮断裂失效分析[J]. 金属热处理, 2019, 44(S1): 251-254. Shi Qiuyue, Yan Shijie, Ma Dongwei. Tooth fracture failure analysis of engine Gear[J]. Heat Treatment of Metals, 2019, 44(S1): 251-254. [9]周素霞, 谢基龙. 高速客车空心车轴裂纹扩展特性研究[J]. 工程力学, 2009, 26(7): 232-237. Zhou Suxia, Xie Jilong, et al. Research of the fatigue crack propagation characteristic on railway hollow axles[J]. Engineering Mechanics, 2009, 26(7): 232-237. [10]李 宇, 徐 洲, 潘健生, 等. 渗碳件“尖角效应”的定s量表征及其变化规律研究[J]. 热加工工艺, 2000(2): 16-18. Li Yu, Xu Zhou, Pan Jiansheng, et al. Quantitative expression of "corner effect" for carburizing parts and the study of its rule[J]. Hot Working Technology, 2000(2): 16-18. [11]李 超, 邹胜利, 李永康. 碳化物细化工艺及其对GCr15钢轴承接触疲劳寿命的影响[J]. 钢铁, 1981, 16(4): 50-51. Li Chao, Zhou Shengli, Li Yongkang. Carbon refining technology and its effect on the contact fatigue life of GCr15 steel bearings[J]. Iron and Steel, 1981, 16(4): 50-51. [12]唐 鑫, 朱如鹏, 杨卯生, 等. 新型高温渗碳不锈航空齿轮钢齿轮的弯曲疲劳失效机理[J]. 航空动力学报, 2022, 37(3): 589-599. Tang Xin, Zhu Rupeng, Yang Maosheng, et al. Bending Fatigue failure mechanism of the new high temperature carburizing stainless aviation steel gear[J]. Journal of Aerospace Power, 2022, 37(3): 589-599. [13]马茂元, 宋 伟, 吴永君. 渗碳层中的未溶碳化物对接触疲劳性能的影响[J]. 材料热处理学报, 1992, 13(2): 18-23. Ma Maoyuan, Song Wei, Wu Yongjun. Effect of undissolved carbides in carburized layer on contact fatigue properties[J]. Transactions of Materials and Heat Treatment, 1992, 13(2): 18-23. |