[1]温二丁. NM600耐磨钢的组织性能调控及磨损特性研究[D]. 北京: 北京科技大学, 2019. [2]唐春霞, 曹文全. 耐磨钢的国内生产现状及发展前景[J]. 宽厚板, 2018, 24(3): 37-41. Tang Chunxia, Cao Wenquan. Current production situation and development prospect of wear-resistant steel at home[J]. Wide and Heavy Plate, 2018, 24(3): 37-41. [3]宋红宇, 李灿明, 周 平, 等. 低成本NM400高强低合金耐磨钢的开发[J]. 轧钢, 2012, 29(4): 1-3. Song Hongyu, Li Canming, Zhou Ping, et al. Development of high strength low alloy wear-resistant steel NM400[J]. Steel Rolling, 2012, 29(4): 1-3. [4]Ortner H M, Ettmayer P, Kolaska H, et al. The history of the technological progress of hardmetals[J]. International Journal of Refractory Metals and Hard Materials, 2015, 49: 3-8. [5]曹 艺, 王昭东, 吴 迪, 等. NM400高强度低合金耐磨钢的组织与性能[J]. 东北大学学报(自然科学版), 2011(2): 241-244. Cao Yi, Wang Zhaodong, Wu Di, et al. Microstructure and mechanical properties of HSLA wear-resistant steel NM400[J]. Journal of Northeastern University (Natural Science), 2011(2): 241-244. [6]李灿明. 淬火工艺对耐磨钢NM400组织性能的影响[J]. 金属热处理, 2021, 45(6): 69-73. Li Canming. Effect of quenching on microstructure and properties of wear-resistant steel NM400[J]. Heat Treatment of Metals, 2021, 45(6): 69-73. [7]王中学, 郭伟达, 李 涛. 0.15%镍对NM400钢显微组织和低温性能的影响[J]. 金属热处理, 2019, 44(10): 152-155. Wang Zhongxue, Guo Weida, Li Tao. Effect of 0.15%Ni on microstructure and low temperature toughness of NM400 steel[J]. Heat Treatment of Metals, 2019, 44(10): 152-155. [8]王自力, 陈荣发, 郑志伟, 等. 42CrMo钢活塞杆表面氧氮复合渗层的显微组织和耐磨性能[J]. 金属热处理, 2021, 46(8): 225-229. Wang Zili, Chen Rongfa, Zheng Zhiwei, et al. Microstructure and wear resistance of oxynitriding layer on piston rod surface of 42CrMo steel[J]. Heat Treatment of Metals, 2021, 46(8): 225-229. [9]José Rendón, Mikael Olsson. Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods[J]. Wear, 2009, 267: 2055-2061. [10]王 幸, 李红英, 汤 伟, 等. 一种高强度钢的CCT曲线的测定与分析[J]. 中南大学学报(自然科学版), 2021, 52(4): 1090-1098. Wang Xing, Li Hongying, Tang Wei, et al. Determination and analysis of CCT curve of a high strength steel[J]. Journal of Central South University (Science and Technology), 2021, 52(4): 1090-1098. [11]陈 鑫, 徐 光, 姚籽杉, 等. NM400马氏体耐磨钢静态CCT曲线[J]. 特殊钢, 2021, 42(3): 63-66. Chen Xin, Xu Guang, Yao Zishan, et al. Static CCT curve of martensite wear-resistant steel NM400[J]. Special Steel, 2021, 42(3): 63-66. [12]霍喜伟. Cr对20MnSiV门架型钢动态CCT曲线和性能的影响[J]. 金属热处理, 2021, 46(7): 89-93. Huo Xiwei. Effect of Cr on dynamic CCT curves and properties of 20MnSiV gantry steel[J]. Heat Treatment of Metals, 2021, 46(7): 89-93. [13]Ghosh S, Mula S. Thermomechanical processing of low carbon Nb-Ti stabilized microalloyed steel: Microstructureand mechanical properties[J]. Materials Science and Engineering A, 2015, 646: 218-233. [14]Morito S, Tanaka H, Konishi R. The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Materialia, 2003, 51: 1789-1799. [15]刘宗昌, 袁长军, 计云萍, 等. 贝氏体铁素体的形核[J]. 材料热处理学报, 2011, 32(10): 74-79. Liu Zongchang, Yuan Changjun, Ji Yunping, et al. Study on nucleation of bainite ferrite [J]. Transactions of Materials and Heat Treatment, 2011, 32(10): 74-79. [16]Li X, Ma X, Subramanian S V, et al. Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel[J]. Materials Science and Engineering A, 2014, 616: 141-147. [17]Wen E D, Song R B, Xiong W M, et al. Effect of tempering temperature on microstructures and wear behavior of a 500 HB grade wear-resistant steel[J]. Metals, 2019, DOI: 10.3390/met9010045. |