[1]Zhong X, Han E H, Wu X. Corrosion behavior of alloy 690 in aerated supercritical water[J]. Corrosion Science, 2013, 66: 369-379. [2]Li X, Wang J, Han E H, et al. Corrosion behavior for alloy 690 and alloy 800 tubes in simulated primary water[J]. Corrosion Science, 2013, 67: 169-178. [3]Zhang X Y, Ren P D, Zhong F C, et al. Fretting wear and friction oxidation behavior of 0Cr20Ni32AlTi alloy at high temperature[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(4): 825-830. [4]Lavella M, Botto D. Fretting wear characterization by point contact of nickel superalloy interfaces[J]. Wear, 2011, 271(9/10): 1543-1551. [5]Waterhouse R B. Fretting Corrosion[M]. London: Pergamon Press, 1972. [6]Hong S M, Kim I S. Impact fretting wear of alloy 690 tubes at 25 ℃ and 290 ℃[J]. Wear, 2005, 259(1/6): 356-360. [7]Lim M K, Oh S D, Lee Y Z. Friction and wear of Inconel 690 and Inconel 600 for steam generator tube in room temperature water[J]. Nuclear Engineering and Design, 2003, 226(2): 97-105. [8]Kai J J, Tsai C H, Yu G P. The IGSCC, sensitization, and microstructure study of alloys 600 and 690[J]. Nuclear Engineering and Design, 1993, 144(3): 449-457. [9]Stiller K, Nilsson J O, Norring K. Structure, chemistry, and stress corrosion cracking of grain boundaries in alloys 600 and 690[J]. Metallurgical and Materials Transactions A, 1996, 27(2): 327-341. [10]Casales M, Salinas Bravo V M, Martinez Villafañe A, et al. Effect of heat treatment on the stress corrosion cracking of alloy 690[J]. Materials Science and Engineering A, 2002, 332(1/2): 223-230. [11]Delabrouille F, Legras L, Vaillant F, et al. Effect of the chromium content and strain on the corrosion of nickel based alloys in primary water of pressurized water reactors[J]. Materials at High Temperatures, 2005, 22(3/4): 287-292. [12]陈 波, 郝宪朝, 马颖澈, 等. 添加N对Inconel 690合金显微组织和晶界微区成分的影响[J]. 金属学报, 2017, 53(8): 983-990. Chen Bo, Hao Xianchao, Ma Yingche, et al. Effects of nitrogen addition on microstructure and grain boundary microchemistry of Inconel alloy 690[J]. Acta Metallurgica Sinica, 2017, 53(8): 983-990. [13]Hwang S S, Hong P K, Yun S L, et al. Transgranular SCC mechanism of thermally treated alloy 600 in alkaline water containing lead[J]. Corrosion Science, 2007, 49(10): 3797-3811. [14]Zhang Z Z, Wang J Q, Ke H W. Effects of surface state and applied stress on stress corrosion cracking of alloy 690TT in lead-containing caustic solution[J]. Journal of Materials Science and Technology, 2012, 28(9): 785-792. [15]王 彬, 程 明, 张士宏, 等. Inconel 690合金的固溶处理制度[J]. 材料热处理学报, 2012, 33(11): 68-72. Wang Bin, Cheng Ming, Zhang Shihong, et al. Solid solution treatment of Inconel 690 alloy[J]. Transactions of Materials and Heat Treatment, 2012, 33(11): 68-72. [16]朱 红, 董建新, 张麦仓, 等. 固溶处理对Inconel 690合金组织影响[J]. 北京科技大学学报, 2002, 24(5): 511-513, 532. Zhu Hong, Dong Jianxin, Zhang Maicang, et al. Solid-solution effect on microstructure of Inconel 690 superalloy[J]. Journal of University of Science and Technology Beijing, 2002, 24(5): 511-513, 532. [17]Zhu M, Zhou Z. On the mechanisms of various fretting wear modes[J]. Tribology International, 2011, 44(11): 1378-1388. [18]张绪寿, 刘 洪, 王秀娥. 硬度对碳钢微动磨损行为和磨屑组分的影响[J]. 摩擦学学报, 1995, 15(4): 300-305. Zhang Xushou, Liu Hong, Wang Xiue. Effect of the hardness on fretting wear behaviour and wear debris composition of carbon steel[J]. Tribology, 1995, 15(4): 300-305. [19]Kenneth G Budinski. Effect of hardness differential on metal-to-metal fretting damage[J]. Wear, 2013, 301(1/2): 501-507. |