[1]Li H Q, Wang M, Lou D J, et al. Microstructural features of biomedical cobalt-chromium-molybdenum (CoCrMo) alloy from powder bed fusion to aging heat treatment[J]. Journal of Materials Science and Technology, 2020, 45: 146-156. [2]Yamanaka K, Mori M, Kartika I, et al. Effect of multipass thermomechanical processing on the corrosion behaviour of biomedical Co-Cr-Mo alloys[J]. Corrosion Science, 2019, 148: 178-187. [3]Manam N S, Harun W, Shri D, et al. Study of corrosion in biocompatible metals for implants: A review[J]. Journal of Alloys and Compounds, 2017, 701: 698-715. [4]Akcin E T, Güncü M B, Aktas G, et al. Effect of manufacturing techniques on the marginal and internal fit of cobalt-chromium implant-supported multiunit frameworks[J]. Journal of Prosthetic Dentistry, 2018, 120: 715-720. [5]Han X, Sawada T, Schille C, et al. Comparative analysis of mechanical properties and metal-ceramic bond strength of Co-Cr dental alloy fabricated by different manufacturing processes[J]. Materials, 2018, 11(10): 1801. [6]Li J, Chen C, Liao J, et al. Bond strengths of porcelain to cobalt-chromium alloys made by casting, milling, and selective laser melting[J]. Journal of Prosthetic Dentistry, 2017, 120: 617-623. [7]Azizi H, Zurob H, Bose B, et al. Additive manufacturing of a novel Ti-Al-V-Fe alloy using selective laser melting[J]. Additive Manufacturing, 2018, 21: 529-535. [8]Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: A review of their microstructure and properties[J]. Materials Science and Engineering A, 2020, 772: 138633. [9]Finazzi V, Denir A G, Biffi C A, et al. Design and functional testing of a novel ballon-expandable cardiovascular stent in CoCr alloy produced by selective laser melting[J]. Journal of Manufacturing and Processing, 2020, 55: 161-173. [10]杨立军, 郑 航, 李 俊, 等. 热处理对激光选区熔化成型316L合金综合性能的影响[J]. 材料导报, 2021, 35(12): 12103-12109. Yang Lijun, Zheng Hang, Li Jun, et al. Effect of heat treatment on comprehensive properties of selective laser melting manufacturing 316L alloy[J]. Materials Reports, 2021, 35(12): 12103-12109. [11]Takaichi A, Kajima Y, Kittikundecha N, et al. Effect of heat treatment on the anisotropic microstructural and mechanical properties of Co-Cr-Mo alloys produced by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102: 103496. [12]Wang Z, Tang S Y, Scudino S, et al. Additive manufacturing of a martensitic Co-Cr-Mo alloy: Towards circumventing the strength-ductility trade-off[J]. Additive Manufacturing, 2021, 37: 101725. [13]Kajima Y, Takaichi A, Kittikundecha N, et al. Effect of heat-treatment temperature on microstructures and mechanical properties of Co-Cr-Mo alloys fabricated by selective laser melting[J]. Materials Science and Engineering A, 2018, 726: 21-31. [14]Zimmermann J, Ciacchi LC. Origin of the selective Cr oxidation in CoCr alloy surfaces[J]. Journal of Physical Chemistry Letters, 2010, 1(15): 2343-2348. [15]高 茜. 不同工艺制作的钴铬合金和钛的细菌黏附及耐腐蚀性研究[D]. 济南: 山东大学, 2020. Gao Qian. Bacterial adhesion and corrosion resistance of cobalt chromium alloy and titanium fabricated by different methods[D]. Jinan: Shandong University, 2020. [16]Mardanifar A, Mohseni A, Mahdavi S. Wear and corrosion of Co-Cr coatings electrodeposited from a trivalent chromium solution: Effect of heat treatment temperature[J]. Surface and Coatings Technology, 2021, 422(3): 127535. [17]邓煜华, 黎振华, 姚碧波, 等. 激光功率与扫描速度对选区激光熔化钴铬合金组织性能的影响[J/OL]. 表面技术, 2022: 1-15[2022-04-12]. http://kns.cnki.net/kcms/detail/50.1083.tg.20220410.2318.032.html. [18]曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社: 75-76. [19]Seo B, Park H K, Kim G, et al. Corrosion behavior of additive manufactured CoCr parts polished with plasma electrolytic polishing[J]. Surface and Coatings Technology, 2021, 406: 126640. [20]Hassani F Z, Ketabchi M, Bruschi S, et al. Effects of carbide precipitation on the microstructural and tribological properties of Co-Cr-Mo-C medical implants after thermal treatment[J]. Journal of Materials Science, 2016, 51(9): 4495-4508. |