[1]刘 燕, 王毛球, 刘国权. 回火温度对40CrNi3MoV钢组织和力学性能的影响[J]. 金属热处理, 2014, 39(6): 41-45. Liu Yan, Wang Maoqiu, Liu Guoquan. Effects of tempering temperature on microstructure and mechanical properties of 40CrNi3MoV steel[J]. Heat Treatment of Metals, 2014, 39(6): 41-45. [2]栾晓圣, 梁志强, 赵文祥, 等. 45CrNiMoVA钢脉冲磁处理的强化机理[J]. 金属学报, 2021, 57(10): 1272-1280. Luan Xiaosheng, Liang Zhiqiang, Zhao Wenxiang, et al. Strengthening mechanism of 45CrNiMoVA steel by pulse magnetic treatment[J]. Acta Metallurgica Sinica, 2021, 57(10): 1272-1280. [3]Yang G W, Sun X J, Li Z D, et al. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel[J]. Materials and Design, 2013, 50(1): 102-107. [4]Tang S, Liu Z Y, Wang G D. Development of high strength plates with low yield ratio by the combination of TMCP and inter-critical quenching and tempering[J]. Steel Research International, 2011, 82(7): 772-778. [5]Wang Y J, Sun J J, Tao J, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility[J]. Acta Materialia, 2018, 158: 247-256. [6]Chen W J, Gao P F, Wang S, et al. Strengthening mechanisms of Nb and V microalloying high strength hot-stamped steel[J]. Materials Science and Engineering A, 2020, 797: 140115. [7]衣忠文, 麻 衡. Nb-Mo、V微合金元素对NM500超高强度耐磨钢板组织与性能的影响[J]. 金属热处理, 2013, 38(7): 57-61. Yi Zongwen, Ma Heng. Influences of Nb-Mo, V microalloying on microstructure and properties of NM500 ultrahigh strength wear resistant steel plate[J]. Heat Treatment of Metals, 2013, 38(7): 57-61. [8]张朝磊, 邵洙浩, 李 戬, 等. 铌微合金化技术在中高碳钢中的应用现状与发展[J]. 材料导报, 2021, 35(5): 5102-5106. Zhang Chaolei, Shao Zhuhao, Li Jian, et al. Application and development of niobium microalloying technology in medium and high carbon steel[J]. Materials Reports, 2021, 35(5): 5102-5106. [9]Morito S, Huang X, Furuhara T. The morphology and crystallography of lath martensite in alloy steels[J]. Acta Materialia, 2006, 54(19): 5323-5331. [10]张正延, 孙新军, 雍岐龙, 等. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为[J]. 金属学报, 2016, 52(4): 410-418. Zhang Zhengyan, Sun Xinjun, Yong Qilong, et al. Precipitation behavior of nanometer-sized carbides in Nb-Mo microalloyed high strength steel and its strengthening mechanism[J]. Acta Metallurgica Sinica, 2016, 52(4): 410-418. [11]石可伟, 蒋栋初, 郑力宁, 等. 中碳铌微合金化钢NbC的析出控制[J]. 连铸, 2020, 45(3): 77-80. Shi Kewei, Jiang Dongchu, Zheng Lining, et al. Precipitation control of NbC in medium carbon niobium microalloyed steel[J]. Continuous Casting, 2020, 45(3): 77-80. [12]曹燕光, 李昭东, 丁灿灿, 等. 铌微合金化对高铁车轴钢淬透性的影响[J]. 钢铁, 2020, 55(6): 107-112. Cao Yangaung, Li Zhaodong, Ding Cancan, et al. Effect of niobium addition on hardenability of high-speed railway railway axle steel[J]. Iron and Steel, 2020, 55(6): 107-112. [13]王春芳. 低合金马氏体钢强韧性组织控制单元的研究[D]. 北京: 钢铁研究总院, 2008. [14]Yang G W, Sun X J, Li Z D, et al. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel[J]. Materials and Design, 2013, 50(1): 102-107. [15]Dias M, Rosiński M, Rodrigues P, et al. Gibbs-Thomson effect as driving force for liquid film migration: Converting metallic into ceramic fibers through intrinsic oxidation[J]. Acta Materialia, 2021, 218: 117216. [16]Han Y, Shi J, Xu L et al. TiC precipitation induced effect on microstructure and mechanical properties in low carbon medium manganese steel[J]. Materials Science and Engineering A, 2011, 530: 643-651. [17]Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Materials Science and Engineering A, 2006, 438: 237-240. |