[1]吕宇鹏, 朱瑞富. 超高锰耐磨钢的组织与性能研究[J]. 矿山机械, 1998, 26(6): 69-71. [2]李保元, 徐流杰, 魏世忠. 高钒高速钢与高铬铸铁滑动磨损性能研究[J]. 矿山机械, 2008, 36(16): 41-43. Li Baoyuan, Xu Liujie, Wei Shizhong. Research on sliding wear property of high-vanadium high-speed steel and high-chromium cast iron[J]. Mining and Processing Equipment, 2008, 36(16): 41-43. [3]曹 艺, 王昭东, 吴 迪, 等. NM400高强度低合金耐磨钢的组织与性能[J]. 东北大学学报: 自然科学版, 2011, 32(2): 241-244. Cao Yi, Wang Zhaodong, Wu Di, et al. Microstructure and mechanical properties of HSLA wear-resistant steel NM400[J]. Journal of Northeastern University(Natural Science), 2011, 32(2): 241-244. [4]刘伟建, 李 晶, 霍向东. 高强度低合金耐磨钢NM400的强韧化机制[J]. 钢铁研究学报, 2014, 26(7): 77-81. Liu Weijian, Li Jing, Huo Xiangdong. Mechanism of strengthening and toughening for wear resistant steel NM400 with high strength and low alloy[J]. Journal of Iron and Steel Research, 2014, 26(7): 77-81. [5]耿志达, 武会宾, 赵爱民, 等. Nb对中碳低合金耐磨钢组织和性能的影响[J]. 工程科学学报, 2015, 37(7): 905-912. Geng Zhida, Wu Huibin, Zhao Aimin, et al. Effect of Nb on the microstructure and mechanical properties of medium-carbon low-alloy wear-resistant steel[J]. Chinese Journal of Engineering, 2015, 37(7): 905-912. [6]南 竹, 张国赏. 第二相粒子增强钢铁材料的研究进展[J]. 铸造技术, 2018, 39(7): 1633-1636. Nan Zhu, Zhang Guoshang. Research progress on second phase particle reinforced steel and iron materials[J]. Foundry Technology, 2018, 39(7): 1633-1636. [7]付锡彬, 陈子豪, 张 可, 等. 淬火温度对高Ti低合金耐磨钢组织及力学性能的影响[J]. 金属热处理, 2022, 47(4): 122-128. Fu Xibin, Chen Zihao, Zhang Ke, et al. Effect of quenching temperature on microstructure and mechanical properties of high Ti low alloy wear-resistant steel[J]. Heat Treatment of Metals, 2022, 47(4): 122-128. [8]黄 龙, 邓想涛, 王昭东. 回火温度对颗粒增强型低合金耐磨钢组织和性能的影响[J]. 金属热处理, 2022, 47(3): 1-6. Huang Long, Deng Xiangtao, Wang Zhaodong. Effect of tempering temperature on microstructure and properties of particle reinforced low-alloyed wear resistant steel[J]. Heat Treatment of Metals, 2022, 47(3): 1-6. [9]吴钱林, 孙扬善, 薛 烽, 等. 原位TiC颗粒弥散强化普碳钢的磨损性能[J]. 东南大学学报(自然科学版), 2006, 36(5): 836-841. Wu Qianlin, Sun Yangshan, Xue Feng, et al. Wear behavior of common straight carbon steels strengthened by in situ TiC dispersion[J]. Journal of Southeast University (Natural Science), 2006, 36(5): 836-841. [10]梁小凯, 孙新军, 雍岐龙, 等. TiC颗粒强化型马氏体耐磨钢的性能研究[J]. 钢铁钒钛, 2017, 38(1): 48-53. Liang Xiaokai, Sun Xinjun, Yong Qilong, et al. Study on performance of TiC particle reinforced martensite wear-resistant steel[J]. Iron Steel Vanadium Titanium, 2017, 38(1): 48-53. [11]孙新军, 刘罗锦, 梁小凯, 等. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672. Sun Xinjun, Liu Luojin, Liang Xiaokai, et al. TiC precipitation behavior and its effect on abrasion resistance of high titanium wear-resistant steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 661-672. [12]潘小燕, 梁 亮. 基于超硬TiC增强耐磨性超级耐磨钢研究与应用[J]. 涟钢科技与管理, 2020(1): 13-17. [13]龚建勋, 许继青, 路德斌, 等. TiC颗粒对铁-碳-铬-硅合金堆焊层显微组织及耐磨性的影响[J]. 机械工程材料, 2015, 39(4): 43-47, 52. Gong Jianxun, Xu Jiqing, Lu Debin, et al. Effects of TiC particles on microstructure and abrasion resistance of Fe-C-Cr-Si alloy hardfacing layers[J]. Materials for Mechanical Engineering, 2015, 39(4): 43-47, 52. [14]殷延涛. 新型TiC颗粒增强型耐磨钢的耐磨性能研究[J]. 山东冶金, 2020, 42(1): 42-45. Yin Yantao. Study on wear resistance of TiC grain reinforced wear resistant steel[J]. Shandong Metallurgy, 2020, 42(1): 42-45. [15]于 浩, 张道达, 肖荣亭, 等. 回火温度对Q960钢析出物组织特征的影响[J]. 北京科技大学学报, 2011, 33(6): 715-720. Yu Hao, Zhang Daoda, Xiao Rongting, et al. Effect of tempering temperature on the structural properties of precipitates in Q960 steel[J]. Journal of University of Science and Technology Beijing, 2011, 33(6): 715-720. [16]韩 赟, 时 捷, 武文华, 等. TiC纳米析出相对低碳马氏体钢的韧化机理[J]. 材料热处理学报, 2013, 34(5): 65-69. Han Yun, Shi Jie, Wu Wenhua, et al. Toughening mechanism of TiC nano-sized precipitate in low carbon martensitic steels[J]. Transactions of Materials and Heat Treatment, 2013, 34(5): 65-69. [17]Xu L, Shi J, Cao W Q, et al. Yield strength enhancement of martensitic steel through titanium addition[J]. Journal of Materials Science, 2011, 46(10): 3653-3658. [18]Wang Z, Lin T, He X, et al. Fabrication and properties of the TiC reinforced high-strength steel matrix composite[J]. International Journal of Refractory Metals and Hard Materials, 2016, 58: 14-21. |