[1]雄雪钢, 张开华, 龚 慧, 等. 控轧控冷工艺对L415M管线钢组织性能的影响[J]. 金属热处理, 2019, 44(7): 46-50. Xiong Xuegang, Zhang Kaihua, Gong Hui, et al. Effect of controlled rolling and controlled cooling process on microstructure and mechanical properties of pipeline steel L415M[J]. Heat Treatment of Metals, 2019, 44(7): 46-50. [2]路 峰, 王 东, 李四军, 等. TMCP工艺对汽车大梁用钢组织和性能的影响[J]. 金属热处理, 2015, 40(3): 159-162. Lu Feng, Wang Dong, Li Sijun, et al. Influence of TMCP process on microstructure and mechanical properties of automobile beam steel[J]. Heat Treatment of Metals, 2015, 40(3): 159-162. [3]陈其源, 刘振宇, 周晓光, 等. 热轧汽车大梁钢生产现状及其发展趋势[J]. 轧钢, 2016, 33(2): 51-55. Chen Qiyuan, Liu Zhenyu, Zhou Xiaoguang, et al. Current situation and development of hot-rolled automotive frame steel[J]. Steel Rolling, 2016, 33(2): 51-55. [4]惠亚军, 潘 辉, 李文远, 等. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139. Hui Yajun, Pan Hui, Li Wenyuan, et al. Study on heating schedule of 1000 MPa grade Nb-Ti microalloyed ultra-high strength steel[J]. Acta Metallurgica Sinica, 2017, 53(2): 129-139. [5]王宝峰, 丁 国, 赵丽萍, 等. Nb-Ti微合金化钢QStE380TM汽车大梁用热轧钢板的研制[J]. 特殊钢, 2006, 27(2): 49-51. Wang Baofeng, Ding Guo, Zhao Liping, et al. Research and production of Nb-Ti microalloy steel QStE380TM hot rolled plate for auto beam by CSP line[J]. Special Steel, 2006, 27(2): 49-51. [6]董 毅, 韩 斌, 时晓光, 等. Si和Nb对高强热轧高扩孔钢组织和性能的影响[J]. 材料科学与工艺, 2016, 24(2): 53-57. Dong Yi, Han Bin, Shi Xiaoguang, et al. Effects of Si and Nb on the microstructure and properties of high strength hot-rolled steel with high hole expansion ratio[J]. Materials Science and Technology, 2016, 24(2): 53-57. [7]彭 欢, 胡学文, 王海波, 等. 终轧温度和卷取温度对汽车大梁钢氧化铁皮特征的影响[J]. 热加工工艺, 2020, 49(5): 120-122, 125. Peng Huan, Hu Xuewen, Wang Haibo, et al. Effects of finish rolling temperature and coiling temperature on oxide scale characteristics of automobile beam steel[J]. Hot Working Technology, 2020, 49(5): 120-122, 125. [8]汪小培, 赵爱民, 赵征志, 等. Ti微合金钢中纳米尺寸碳化物的析出强化[J]. 金属热处理, 2014, 39(4): 19-22. Wang Xiaopei, Zhao Aimin, Zhao Zhengzhi, et al. Precipitation strengthening of nanometer-sized carbides in Ti micro-alloyed steel[J]. Heat treatment of Metals, 2014, 39(4): 19-22. [9]Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J]. ISIJ International, 2004, 44(11): 1945-1951. [10]李小琳, 王昭东. 含Nb-Ti低碳微合金钢中纳米碳化物的相间析出行为[J]. 金属学报, 2015, 51(4): 417-424. Li Xiaolin, Wang Zhaodong. Interphase precipitation behaviors of nanometer-sized carbides in a Nb-Ti-bearing low-carbon microalloyed steel[J]. Acta Metallurgica Sinica, 2015, 51(4): 417-424. [11]杨跃标, 邓 深, 樊 雷, 等. 钛微合金化高强钢的组织性能及强化机制[J]. 钢铁, 2019, 54(10): 72-79. Yang Yuebiao, Deng Shen, Fan Lei, et al. Microstructure, mechanical properties and strengthening mechanism of Ti microalloyed high strength steel[J]. Iron and Steel, 2019, 54(10): 72-79. [12]蔡明晖. 高延伸凸缘型铁素体/贝氏体钢的组织演变及力学行为[D]. 沈阳: 东北大学, 2009. Cai Minghui. Microstructural evolution and mechanical behavior of ferrite/bainite steels with high strength-flangeability[D]. Shenyang: Northeastern University, 2009. [13]Gladman T. Precipitation hardening in metals[J]. Materials Science and Technology, 1999, 5(1): 30-36. [14]赵冬伟. 钛微合金钢中钼对含钛碳氮化物在奥氏体中溶解与析出的影响[D]. 昆明: 昆明理工大学, 2012. [15]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [16]董浩凯, 陈 浩, 张 弛, 等. 低合金钢中纳米碳化物相间析出行为的研究进展[J]. 中国材料进展, 2018, 37(6): 403-409, 427. Dong Haokai, Chen Hao, Zhang Chi, et al. An overview of interphase precipitation of nano-carbide in low alloy steels[J]. Materials China, 2018, 37(6): 403-409, 427. [17]蔡明晖, 丁 桦, 张建苏, 等. 经济型铁素体/贝氏体高扩孔钢的组织与性能[J]. 钢铁, 2008, 43(8): 77-80, 85. Cai Minghui, Ding Hua, Zhang Jiansu, et al. Microstructures and properties of ferrite/bainite dual-phase steels with high hole-expanding ratio[J]. Iron and Steel, 2008, 43(8): 77-80, 85. [18]雍岐龙, 郑 鲁, 孙珍宝. 微合金钢中碳化铌在铁素体中的沉淀和沉淀强化[J]. 钢铁研究总院学报, 1982, 2(1): 117. Yong Qilong, Zheng Lu, Sun Zhenbao, et al. Precipitation and precipitation strengthening of niobium carbide in ferrite in microalloyed steel[J]. Central Iron and Steel Research Institute, 1982, 2(1): 117. |