[1]江易林, 方金祥, 董世运, 等. 无碳化物贝氏体钢的研究进展[J]. 热加工工艺, 2020, 49(22): 16-21. Jiang Yilin, Fang Jinxiang, Dong Shiyun, et al. Research progress of non-carbide bainite steel[J]. Hot Working Technology, 2020, 49(22): 16-21. [2]杨赛赛, 王文焱, 李梓箫, 等. 等温工艺对贝氏体钢微观组织及力学性能的影响[J]. 塑性工程学报, 2021, 28(5): 257-263. Yang Saisai, Wang Wenyan, Li Zixiao, et al. Effect of isothermal process on microstructure and mechanical properties of bainite steel[J]. Journal of Plasticity Engineering, 2021, 28(5): 257-263. [3]刘 伟. 超细无碳化物贝氏体钢相变动力学与组织调控[D]. 北京: 北京科技大学, 2021. Liu Wei. Phase transformation kinetics and microstructure control in ultra-fine carbide-free bainitic steel[D]. Beijing: University of Science and Technology Beijing, 2021. [4]计 珊. 碳含量对贝氏体钢组织和性能的影响[D]. 秦皇岛: 燕山大学, 2020. Ji Shan. Effect of carbon content on microstructure and properties of bainite steel[D]. Qinhuangdao: Yanshan University, 2020. [5]康沫狂, 贾虎生, 杨延清, 等. 新型系列准贝氏体钢[J]. 金属热处理, 1995, 20(12): 4-5. Kang Mokuang, Jia Husheng, Yang Yanqing, et al. New type meta-bainitic steel series[J]. Heat Treatment of Metals, 1995, 20(12): 4-5. [6]Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Development of hard bainite[J]. ISIJ International, 2003, 43(8): 1238-1243. [7]张福成, 杨志南, 郑春雷, 等. 含Si/Al低温贝氏体钢的研究与应用[C]//第十届中国钢铁年会暨第六届宝钢学术年会论文集II. 2015: 712-717. [8]田亚强, 田 耕, 郑小平, 等. 低碳高强贝氏体钢的研究现状[J]. 钢铁研究学报, 2018, 30(7): 505-514. Tian Yaqiang, Tian Geng, Zheng Xiaoping, et al. Research status of low carbon high strength bainitic steel[J]. Journal of Iron and Steel Research, 2018, 30(7): 505-514. [9]笪光杰, 杨忠民, 李立新, 等. Si-Mn-Mo系低碳贝氏体钢的连续冷却转变曲线及组织特征[J]. 金属热处理, 2019, 44(2): 16-24. Da Guangjie, Yang Zhongmin, Li Lixin, et al. Continuous cooling transformation curves and microstructure of Si-Mn-Mo low carbon bainitic steel[J]. Heat Treatment of Metals, 2019, 44(2): 16-24. [10]徐祖耀, 陈卫中. 奥氏体强化和其中碳含量对马氏体及贝氏体相变的影响[J]. 上海金属, 1990, 12(4): 4-11. Xu Zuyao, Chen Weizhong. Effect of strength and carbon content of austenite on martensitic and bainitic transformations[J]. Shanghai Metals, 1990, 12(4): 4-11. [11]Singh S B, Bhadeshia H K D H. Estimation of bainite plate-thickness in low-alloy steels[J]. Materials Science and Engineering A, 1998, 245(1): 72-79. [12]Zhao L, Qian L, Zhou Q, et al. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel[J]. Materials and Design, 2019, 183: 108123. [13]Qian L, Li Z, Wang T, et al. Roles of pre-formed martensite in below-Ms bainite formation, microstructure, strain partitioning and impact absorption energies of low-carbon bainitic steel[J]. Journal of Materials Science and Technology, 2022, 96: 69-84. [14]Carlos G M, Georg P, Mahesh S, et al. Transferring nanoscale bainite concept to lower C contents: A perspective[J]. Metals, 2017, 7(5): 159. [15]修文翠, 吴 化, 韩 英, 等. 超级贝氏体组织中的应力诱发相变研究[J]. 哈尔滨工程大学学报, 2019, 40(6): 1115-1121. Xiu Wencui, Wu Hua, Han Ying, et al. Stress-induced phase transformation of super bainite microstructure[J]. Journal of Harbin Engineering University, 2019, 40(6): 1115-1121. [16]陈光辉, 徐 光, 胡海江, 等. 1.6 GPa 级中碳高强贝氏体钢残余奥氏体调控机理[J]. 钢铁, 2021, 56(2): 110-116. Chen Guanghui, Xu Guang, Hu Haijiang, et al. Controlling mechanism of retained austenite in a 1.6 GPa grade medium-carbon high-strength bainitic steel[J]. Iron and Steel, 2021, 56(2): 110-116. [17]严 恒, 胡 锋, 王 坤, 等. 30 GPa·% 级中碳贝氏体钢中残余奥氏体的调控机理[J]. 中国冶金, 2021, 31(7): 22-29. Yan Heng, Hu Feng, Wang Kun, et al. Mechanism of residual austenite in medium-carbon bainite steel of 30 GPa·% level[J]. China Metallurgy, 2021, 31(7): 22-29. |