[1]康显澄. 高强度齿轮钢的开发[J]. 特钢技术, 1995(3): 1-13. Kang Xiancheng. Development of high strength gear steels[J]. Special Steel Technology, 1995(3): 1-13. [2]吴树漂, 刘占江, 武云峰, 等. 我国齿轮钢的生产与应用[J]. 特殊钢, 2003(5): 30-33. Wu Shupiao, Liu Zhanjiang, Wu Yunfeng, et al. Production and application of gear steel in china[J]. Special Steel, 2003(5): 30-33. [3]Farfan S, Rubio-Gonzalez C, Cervantes-Hernandez T, et al. High cycle fatigue, low cycle fatigue and failure modes of a carburized steel[J]. International Journal of Fatigue, 2004, 26(6): 673-678. [4]He Xiaofei, Wang Maoqiu, Hu Chengfei, et al. Study of the relationship among total oxygen, inclusions and fatigue properties of gear steel[J]. Materials Science and Engineering A, 2021, 827: 141999. [5]Hampshire J, King E I, Hoo J. Effect of steel manufacturing process on the quality of bearing steels[J]. American Society for Testing and Materials, 1988, 61: 149-164. [6]Murakami Y, Beretta S. Small defects and inhomogeneities in fatigue strength: Experiments, models and statistical implications[J]. Extremes, 1999, 2(2): 123-147. [7]杨振国, 张继明, 李守新, 等. 高周疲劳条件下高强钢临界夹杂物尺寸估算[J]. 金属学报, 2005(11): 28-34. Yang Zhenguo, Zhang Jiming, Li Shouxin, et al. Estimation of the critical size of inclusion in high strength steel under high cycle fatigue condition[J]. Acta Metallurgica Sinica, 2005(11): 28-34. [8]李云昆, 尉文超, 何肖飞, 等. 不同冶炼方法对扭杆弹簧钢超高周疲劳性能的影响[J]. 钢铁研究学报, 2020, 32(11): 1006-1013. Li Yunkun, Yu Wenchao, He Xiaofei, et al. Effect of different smelting methods on very high cycle fatigue properties of a torsion bar spring steel[J]. Journal of Iron and Steel Research, 2020, 32(11): 1006-1013. [9]Matlock D K, Alogab K A, Richards M D, et al. Surface processing to improve the fatigue resistance of advanced bar steels for automotive applications[J]. Materials Research, 2005, 8(4): 453-459. [10]张永健, 惠卫军, 项金钟, 等. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880-886. Zhang Yongjian, Hui Weijun, Xiang Jinzhong, et al. Effect of grain size on ultra-high-cycle fatigue properties of 42CrMoVNb steel[J]. Acta Metallurgica Sinica, 2009, 45(7): 880-886. [11]马 莉, 王毛球, 徐香秋, 等. 铌硼微合金化齿轮钢的晶粒尺寸及淬透性[J]. 材料热处理学报, 2009, 30(5): 74-78, 91. Ma Li, Wang Maoqiu, Xu Xiangqiu, et al. Austenite grain size and hardenability of Nb-B microalloyed gear steels[J]. Transactions of Materials and Heat Treatment, 2009, 30(5): 74-78, 91. [12]申景霞, 李智峥, 吴苏州, 等. MnCr系列齿轮钢冶炼工艺的技术进展[J]. 炼钢, 2011, 27(3): 74-78. Shen Jingxia, Li Zhizheng, Wu Suzhou, et al. Technical progress in smelting process of MnCr gear steel[J]. Steelmaking, 2011, 27(3): 74-78. [13]张国强. 重载渗碳齿轮钢的疲劳性能研究[D]. 昆明: 昆明理工大学, 2009. [14]胡成飞. 氧含量对渗碳齿轮钢疲劳性能的影响[D]. 武汉: 武汉科技大学, 2019. [15]Sakai Tatsuo, Sato Yosuke, Oguma Noriyasu. Characteristic S-N property of high carbon chromium bearing steel under axial loading in long life fatigue[J]. Transactions of the Japan Society of Mechanical Engineers, 2001, 67: 1980-1987. [16]Genel Kenan, Demirkol Mehmet. Effect of case depth on fatigue performance of AISI 8620 carburized steel[J]. International Journal of Fatigue, 1999, 21(2): 207-212. [17]Mittemeijer E. Fatigue of case-hardened steels; role of residual macro-and microstresses[J]. Journal of Heat Treating, 1983, 3(2): 114-119. [18]吴 化, 闫 肃, 曹 正. 残余奥氏体对20Mn2SiVB钢的疲劳裂纹扩展的影响[J]. 热加工工艺, 2006(2): 20-22. Wu Hua, Yan Su, Cao Zheng. Influence of retained austenite on fatigue crack propagation of 20Mn2SiVB steel[J]. Hot Working Technology, 2006(2): 20-22. [19]王彦彬, 王毛球, 黎振华, 等. 晶粒尺寸对表面渗碳钢疲劳极限的影响[J]. 钢铁研究学报, 2010, 22(11): 23-27. Wang Yanbin, Wang Maoqiu, Li Zhenhua, et al. Effect of grain size on fatigue limit of case-hardened steels[J]. Journal of Iron and Steel Research, 2010, 22(11): 23-27. [20]李守新. 高强度钢超高周疲劳性能: 非金属夹杂物的影响[M]. 北京: 冶金工业出版社, 2010. [21]肖国华, 董 瀚, 王毛球, 等. 钙硫比对18CrNiMo7-6钢中硫化物热变形性能的影响[J]. 机械工程材料, 2010, 34(11): 14-17. Xiao Guohua, Dong Han, Wang Maoqiu, et al. Effect of ratio of calcium to sulfur on hot deformability of sulfide in 18CrNiMo7-6 steel[J]. Materials for Mechanical Engineering, 2010, 34(11): 14-17. |