[1]李少华, 刘 利, 彭红文. 超超临界发电技术在中国的发展现状[J]. 煤炭加工与综合利用, 2020(2): 65-70, 74. Li Shaohua, Liu Li, Peng Hongwen. The present situation of the development of ultra-supercritical power generation technology in China[J]. Coal Processing and Comprehensive Utilization, 2020(2): 65-70, 74. [2]谢 龙. 我国火力发电能耗状况研究及展望[J]. 通信电源技术, 2016, 33(1): 165-166. Xie Long. Research and prospects of energy consumption of thermal power generation in China[J]. Telecom Power Technologies, 2016, 33(1): 165-166. [3]郭进全. 超(超)临界机组高温构件用材料的性能、发展与应用[J]. 安阳工学院学报, 2021, 20(4): 16-20. Guo Jinquan. Performance, development and application of materials for high temperature components of ultra (supercritical) units[J]. Journal of Anyang Institute of Technology, 2021, 20(4): 16-20. [4]王起江, 洪 杰. 超超临界电站锅炉用新型钢管的研制[J]. 宝钢技术, 2008(5): 44-48, 53. Wang Qijiang, Hong Jie. Development of new tubular products for ultra-supercritical boilers[J]. Bao Steel Technology, 2008(5): 44-48, 53. [5]冯红武, 梅云平, 田 泽, 等. 某电厂Super304H钢锅炉高温再热器爆管分析[J]. 湖北电力, 2021, 45(6): 106-111. Feng Hongwu, Mei Yunping, Tian Ze, et al. Analysis of high temperature reheater tube burst of Super304H steel boiler in a power plant[J]. Hubei Electric Power, 2021, 45(6): 106-111. [6]白小龙. 服役态耐热钢管的老化规律及剩余寿命预测[D]. 合肥: 合肥工业大学, 2014. [7]刘永鹏, 许 辉, 王庭文, 等. 超超临界机组Super304H钢高温再热器管失效分析[J]. 节能, 2020, 39(12): 30-31. Liu Yongpeng, Xu Hui, Wang Tingwen, et al. Failure analysis of Super304H steel high temperature reheater tube of ultra supercritical unit[J]. Energy Conservation, 2020, 39(12): 30-31. [8]陈国宏, 白小龙, 刘俊建, 等. 服役态及时效态Super304H耐热钢结构损伤及力学性能衰减的对比研究[J]. 电力建设, 2013, 34(9): 105-111. Chen Guohong, Bai Xiaolong, Liu Junjian, et al. Comparative study on structure damage and mechanical properties degradation of serviced and aging Super304H heat-resistant steel[J]. Electric Power Construction, 2013, 34(9): 105-111. [9]段谟刚. HR3C耐热钢管服役状态及运行可靠性评价[D]. 合肥: 合肥工业大学, 2020. [10]欧 平. Super304H奥氏体耐热钢的时效析出与强化机理[D]. 上海: 上海交通大学, 2015. [11]刘天佐, 魏玉忠, 马芹征, 等. Super304H钢650 ℃时效过程中析出相演化的定量分析[J]. 金属热处理, 2019, 44(12): 232-237. Liu Tianzuo, Wei Yuzhong, Ma Qinzheng, et al. Quantitative analysis on evolution of precipitates in Super304H steel during aging at 650 ℃[J]. Heat Treatment of Metals, 2019, 44(12): 232-237. [12]郑坊平, 庄文斌, 刘佳伟, 等. 超超临界锅炉过热器Super304H 管爆管原因分析[J]. 热加工工艺, 2015, 44(24): 240-243. Zheng Fangping, Zhuang Wenbin, Liu Jiawei, et al. Tube-bursting cause analysis for Super304H steel of superheater in ultra-supercritical boiler[J]. Hot Working Technology, 2015, 44(24): 240-243. [13]刘俊建, 刘 润, 王万里, 等. 晶粒异常长大对服役Super304H管力学性能的影响[J]. 材料热处理学报, 2021, 42(4): 125-131. Liu Junjian, Liu Run, Wang Wanli, et al. Effect of abnormal grain growth on mechanical properties of serviced Super304H steel tube[J]. Transactions of Materials and Heat Treatment, 2021, 42(4): 125-131. [14]冯 文. 304不锈钢晶界结构演化与晶粒尺寸和变形条件的相关性研究[D]. 南京: 南京理工大学, 2018. [15]杨 钢, 孙利军, 张丽娜, 等. 形变孪晶的消失与退火孪晶的形成机制[J]. 钢铁研究学报, 2009, 21(2): 39-43. Yang Gang, Sun Lijun, Zhang Lina, et al. Annihilation of deformation twins and formation of annealing twins[J]. Journal of Iron and Steel Research, 2009, 21(2): 39-43. [16]Demania D A. Recovery and recrystallization in nickel-based superalloy Rene 88 DT[D]. Virginia: University of Virginia, 2002. [17]Mahalingam S, Flewitt P, Knott J. Effect of pre-strain on grain size distributions in 316H austenitic stainless steel[J]. Journal of Materials Science, 2012, 47(2): 960-968. [18]Wang X, Huang Z, Cai B, et al. Formation mechanism of abnormally large grains in a polycrystalline nickel-based superalloy during heat treatment processing[J]. Acta Materialia, 2019, 168: 287-298. [19]潘家栋. Super304H、HR3C耐热钢管高温老化规律的研究[D]. 合肥: 合肥工业大学, 2013. [20]于鸿垚, 迟成宇, 董建新, 等. 650 ℃长期时效过程中 Super304H 耐热不锈钢组织的演变[J]. 北京科技大学学报, 2010, 32(7): 877-882. Yu Honggui, Chi Chengyu, Dong Jianxin, et al. Microstructure evolution of heat-resistant steel Super304H during 650 ℃ long term aging[J]. Journal of University of Science and Technology Beijing, 2010, 32(7): 877-882. [21]王 伟, 黄 翔, 蔡永江, 等. Super304H 奥氏体耐热钢服役36 891 h 后的组织与性能[J]. 材料热处理学报, 2015, 36(10): 89-94. Wang Wei, Huang Xiang, Cai Yongjiang, et al. Microstructure and properties of Super304H austenitic heat-resistant steel after service for 36 891 h[J]. Transactions of Materials and Heat Treatment, 2015, 36(10): 89-94. [22]王 伟, 王志武, 李文胜, 等. 700 ℃长时时效后Super304H钢的析出相分析[J]. 金属热处理, 2017, 42(1): 20-23. Wang Wei, Wang Zhiwu, Li Wensheng, et al. Analysis on precipitates in Super304H steel during long-time aging at 700 ℃[J]. Heat Treatment of Metals, 2017, 42(1): 20-23. [23]Hu G, Wang P, Li D, et al. High-temperature tensile behavior in coarse-grained and fine-grained Nb-containing 25Cr-20Ni austenitic stainless steel[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1455-1465. [24]白佳铭. Co、Cr、C对改性HR3C长期时效组织及力学性能的影响[D]. 西安: 西安理工大学, 2019. |