[1]陈振华, 严红革, 陈吉华, 等. 镁合金[M]. 北京: 化学工业出版社, 2004. [2]Feng X H, Sun Y P, Lu Y W, et al. Effect of the strain rate on the damping and mechanical properties of a ZK60 magnesium alloy[J]. Materials, 2020, 13: 2969. [3]Mo N, Tan Q Y, Bermingham M, et al. Current development of creep-resistant magnesium cast alloys: A review[J]. Materials and Design, 2018, 155: 422-442. [4]Tekumalla S, Seetharaman S, Almajid A, et al. Mechanical properties of magnesium-rare earth alloy systems: A review[J]. Metals, 2015, 5: 1-39. [5]Ruano O A, Alvarez-Leal M, Orozco-Caballero A, et al. Large elongations in WE54 magnesium alloy by solute-drag creep controlling the deformation behavior[J]. Materials Science and Engineering A, 2020, 791: 139757. [6]Su X, Feng Z J, Li Y F, et al. Effect of pouring and mold temperatures on hot tearing susceptibility of WE43 magnesium alloy[J]. International Journal of Metalcasting, 2021, 2(15): 576-586. [7]Ankur K, Khan M F, Kumar P S, et al. Microstructural evolution and corrosion behaviour of friction stir-processed QE22 magnesium alloy[J]. Corrosion Reviews, 2021, 39(4): 351-360. [8]Liu J N, Bian D, Zheng Y F, et al. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems[J]. Acta Biomaterialia, 2020, 102: 508-528. [9]Wu G H, Wang C L, Sun M, et al. Recent developments and applications on high-performance cast magnesium rare-earth alloys[J]. Journal of Magnesium and Alloys, 2021, 9: 1-20. [10]Wang R, Dong J, Fan L K, et al. Microstructure and mechanical properties of rolled Mg-12Gd-3Y-0.4Zr alloy sheets[J]. Transactions of Nonferrous Metals Society of China, 2008, 18: 189-193. [11]李德江. Mg-8Gd-3Y-0.5Zr合金的形变热处理组织与性能研究[D]. 上海: 上海交通大学, 2010. Li Dejiang. Study on the microstructure and mechanical properties of Mg-8Gd-3Y-0.5Zr alloy processed by thermo-mechanical treatments[D]. Shanghai: Shanghai Jiao Tong University, 2010. [12]Luo Q, Guo Y L, Liu B, et al. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review[J]. Journal of Materials Science and Technology, 2020, 44: 171-190. [13]Zhou B P, Liu W C, Wu G H, et al. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. Journal of Materials Science and Technology, 2020, 43: 208-219. [14]Zhou B, Wu D, Chen R S, et al. Enhanced tensile properties in a Mg-6Gd-3Y-0.5Zr alloy due to hot isostatic pressing (HIP)[J]. Journal of Materials Science and Technology, 2019, 35: 1860-1868. [15]郑 梁. Zn及变形工艺对Mg-6Gd-3Y-0.5Zr合金微观组织、织构及力学性能的影响[D]. 长沙: 中南大学, 2011. Zhen Liang. Effects of Zn and deformation process on microstructure, texture and mechanical properties of Mg-6Gd-3Y-0.5Zr alloy[D]. Changsha: Central South University, 2011. [16]谢艳才. Mg-10Gd-3Y-0.4Zr合金时效析出相的电子显微研究[D]. 上海: 上海交通大学, 2013. Xie Yancai. Electron microscopy study of precipitates in Mg-10Gd-3Y-0.4Zr alloys[D]. Shanghai: Shanghai Jiao Tong University, 2013. [17]Zhang Q, Li Q N, Chen X Y, et al. Dynamic precipitation and recrystallization mechanism during hot compression of Mg-Gd-Y-Zr alloy[J]. Journal of Materials Research and Technology, 2021, 15: 37-51. [18]Zhou H, Wang Q D, Ye B, et al. Hot deformation and processing maps of as-extruded Mg-9.8Gd-2.7Y-0.4Zr Mg alloy[J]. Materials Science and Engineering A, 2013, 576: 101-107. [19]Xiao H C, Tang B, Liu C M, et al. Dynamic precipitation in a Mg-Gd-Y-Zr alloy during hot compression[J]. Materials Science and Engineering A, 2015, 645: 241-247. [20]Chao H Y, Sun H F, Wang E D. Working hardening behaviors of severely cold deformed and fine-grained AZ31 Mg alloys at room temperature[J]. Transactions of Nonferrous Metals Society of China, 2011, 21: 235-241. [21]Del Valle J A, Carreno F, Ruano O A. Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling[J]. Acta Materialia, 2006, 24(16): 4247-4259. [22]Zhou Z H, Fan Q C, Xia Z H, et al. Constitutive relationship and hot processing maps of Mg-Gd-Y-Nb-Zr alloy[J]. Journal of Materials Science and Technology, 2017, 33: 637-644. |