[1]Ivanov A S, Grebenkov S K, Bogdanova M V. Optimization of the process of carburizing and heat treatment of low-carbon martensitic steels[J]. Metal Science and Heat Treatment, 2016, 58(1/2): 116-119. [2]Zhang J, Li W, Wang H, et al. A comparison of the effects of traditional shot peening and micro-shot peening on the scuffing resistance of carburized and quenched gear steel[J]. Wear, 2016, 368: 253-257. [3]Song Guangsheng, Liu Xianghua, Wang Guodong, et al. Numerical simulation on carburizing and quenching of gear ring[J]. Journal of Iron and Steel Research International, 2007, 14(6): 47-52. [4]Bepari M M A. Carburizing: A method of case hardening of steel—Science direct[J]. Comprehensive Materials Finishing, 2017, 2: 71-106. [5]Zeng Z, Reddy K M, Song S, et al. Microstructure and mechanical properties of Nb and Ti microalloyed lightweight δ-TRIP steel[J]. Materials Characterization, 2020, 164: 110324. [6]胡成飞, 吴 润, 尉文超, 等. 淬火温度对17Cr2Ni2MoVNb重载齿轮钢组织和硬度的影响[J]. 金属热处理, 2019, 44(10): 91-95. Hu Chengfei, Wu Run, Yu Wenchao, et al. Effect of quenching temperature on microstructure and hardness of heavy-duty gear steel 17Cr2Ni2MoVNb[J]. Heat Treatment of Metals, 2019, 44(10): 91-95. [7]Hang Yalong, Lai Fuqiang, Qu Shengguan, et al. Effect of ultrasonic surface rolling on microstructure and rolling contact fatigue behavior of 17Cr2Ni2MoVNb steel[J]. Surface and Coatings Technology, 2019, 366: 321-330. [8]Qu S G, Zhang Y L, Lai F Q, et al. Effect of tempering temperatures on tensile properties and rotary bending fatigue behaviors of 17Cr2Ni2MoVNb steel[J]. Metals, 2018, 8(7): 507. [9]Andersson J O, Helander T, Hglund L, et al. Thermo-Calc & DICTRA, computational tools for materials science[J]. Calphad-computer Coupling of Phase Diagrams and Thermochemistry, 2002, 26(2): 273-312. [10]Maalekian M, Radis R, Militzer M, et al. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel[J]. Acta Materialia, 2012, 60(3): 1015-1026. [11]Uhm S, Moon J, Lee C, et al. Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe-C-Mn steels: Considering the effect of initial grain size on isothermal growth behavior[J]. ISIJ International, 2004, 44(7): 1230-1237. [12]Gregory S Rohrer. “Introduction to Grains, Phases, and Interfaces—an Interpretation of Microstructure” Trans.AIME, 1948, vol.175, pp.15-51, by C.S.Smith[J]. Metallurgical and Materials Transactions B, 2010, 41(3): 457-494. [13]Yan Biyu, Liu Yongchang, Wang Zejun, et al. The effect of precipitate evolution on austenite grain growth in RAFM steel[J]. Materials, 2017, 10(9): 10-17. [14]Graux A, Cazottes S, Castro D D, et al. Precipitation and grain growth modelling in Ti-Nb microalloyed steels[J]. Social Science Electronic Publishing, 2019, 5: 100-233. [15]Moon J, Kim S, Jeong H, et al. Influence of Nb addition on the particle coarsening and microstructure evolution in a Ti-containing steel weld HAZ[J]. Materials Science and Engineering A, 2007, 454: 648-653. [16]Nagakura S, Oketani S. Structure of transition metal carbides[J]. Transactions of the Iron and Steel Institute of Japan, 1968, 8(5): 265-294. [17]Geise J, Herzig C. Lattice and grain boundary diffusion of niobium in iron[J]. International Journal of Materials Research, 1985, 76(9): 622-626. |