[1]李玉龙. Q355D低合金高强度结构角钢和槽钢开发试制[J]. 宽厚板, 2020, 26(1): 21-23. Li Yulong. The development and trial production of Q355D low alloy high strength structural angle steel and channel steel[J]. Wide and Heavy Plate, 2020, 26(1): 21-23. [2]高海建, 奚 铁, 孙飞飞. 热轧H型钢的轧制及其工程应用[J]. 建筑钢结构进展, 2002(1): 33-40. Gao Haijian, Xi Tie, Sun Feifei. The fabrication and application of hot rolled H-shaped steel[J]. Progress in Steel Building Structures, 2002(1): 33-40. [3]顾建国. 海洋石油平台用H型钢的开发研究[J]. 钢铁, 2001(2): 29-33. Gu Jianguo. Development and research of H-beam using for offshore oil drilling platform[J]. Iron and Steel, 2001(2): 29-33. [4]包俊成, 赵 捷, 宁保群, 等. 低碳铌钒微合金化钢奥氏体连续冷却转变行为[J]. 钢铁研究学报, 2013, 25(8): 28-31. Bao Juncheng, Zhao Jie, Ning Baoqun, et al. Transformation behavior of austenite continuous cooling for Nb-V micro-alloyed low carbon steel[J]. Journal of Iron and Steel Research, 2013, 25(8): 28-31. [5]包俊成, 李 鑫, 赵 捷, 等. Nb-V复合微合金化低合金钢连续冷却转变规律[J]. 材料热处理学报, 2012, 33(S2): 101-104. Bao Juncheng, Li Xin, Zhao Jie, et al. Continuous cooling transformation behavior of Nb-V microalloyed low alloy steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(S2): 101-104. [6]林 武, 张希旺, 赵延阔, 等. Q345钢奥氏体连续冷却转变曲线(CCT图)[J]. 材料科学与工艺, 2009, 17(2): 247-250. Lin Wu, Zhang Xiwang, Zhao Yankuo, et al. Continuous cooling transformation curve of undercooling austenite about Q345 steel[J]. Materials Science and Technology, 2009, 17(2): 247-250. [7]Zhao Mingchun, Yang Ke, Xiao Furen, et al. Continuous cooling transformation of under formed and de-formed low carbon pipe line steels[J]. Materials Science and Engineering A, 2003, 355: 126-136. [8]肖国华, 王福明, 李长荣, 等. 铌钒微合金化高强度船板钢的连续冷却转变规律[J]. 北京科技大学学报, 2008, 30(5): 495-500. Xiao Guohua, Wang Fuming, Li Changrong, et al. Continuous cooling transformation of Nb-V microalloyed high strength hull steel[J]. Journal of University of Science and Technology Beijing, 2008, 30(5): 495-500. [9]段宝美, 邓叙燕, 李玲霞. 30Mn2Cr钢连续冷却转变过程中组织及硬度演变规律的研究[J]. 热加工工艺, 2018, 47(4): 114-118. Duan Baomei, Deng Xuyan, Li Lingxia. Study on evolution regularity of microstructure and hardness of 30Mn2Cr steel during continuous cooling transformation[J]. Hot Working Technology, 2018, 47(4): 114-118. [10]徐 光, 王 巍, 张鑫强, 等. 金属材料CCT曲线测定及绘制[M]. 北京: 化学工业出版社, 2009. [11]Thompson M, Ferry M, Manohar P A. Simulation of hot-band microstructure of C-Mn steels during high speed cooling[J]. ISIJ International, 2001, 41(4): 891-899. [12]孙 岩, 安治国, 宋 月. 高扩孔钢的连续冷却转变[J]. 金属热处理, 2021, 46(6): 209-212. Sun Yan, An Zhiguo, Song Yue. Continuous cooling transformation of a high grade reaming steel[J]. Heat Treatment of Metals, 2021, 46(6): 209-212. [13]高 雅, 孙建林, 贠 冰. Q460C钢连续冷却转变规律研究[J]. 热加工工艺, 2011, 40(10): 38-41. Gao Ya, Sun Jianlin, Qi Bing. Study on continuous cooling transformation regularity of Q460C steel[J]. Hot Working Technology, 2011, 40(10): 38-41. [14]陈继雄, 刘卫航, 彭晓枫. Q345B厚钢板显微组织中带状组织的形成原因及工艺改进[J]. 理化检验(物理分册), 2021, 57(5): 18-20. Chen Jixiong, Liu Weihang, Peng Xiaofeng. Formation reason and process improvement of banded structure in microstructure of Q345B thick steel plate[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2021, 57(5): 18-20. [15]陈建超, 庞洪轩, 温 超, 等. 终轧温度对加Ti低合金Q355B钢板组织性能的影响[J]. 中国冶金, 2021, 31(10): 30-33. Chen Jianchao, Pang Hongxuan, Wen Chao, et al. Effect of finish rolling temperature on microstructure and properties of low alloy Q355B steel plate with Ti[J]. China Metallurgy, 2021, 31(10): 30-33. |