[1]陈 俊, 吕梦阳, 唐 帅, 等. V-Ti微合金钢的组织性能及相间析出行为[J]. 金属学报, 2014, 50(5): 524-530. Chen Jun, Lü Mengyang, Tang Shuai, et al. Mechanical properties and interphase precipitation behaviors in V-Ti microalloyed steel[J]. Acta Metallurgica Sinica, 2014, 50(5): 524-530. [2]Mukherjee S, Timokhina I, Zhu C, et al. Clustering and precipitation processes in a ferritic titanium-molybdenum microalloyed steel[J]. Journal of Alloys and Compounds, 2017, 690(5): 621-632. [3]汪小培, 赵征志, 赵爱民, 等. Mo含量对Ti微合金低碳钢力学性能的影响[J]. 金属热处理, 2014, 39(10): 47-50. Wang Xiaopei, Zhao Zhengzhi, Zhao Aimin, et al. Effect of Mo content on mechanical properties of Ti micro-alloyed low-carbon steel[J]. Heat Treatment of Metals, 2014, 39(10): 47-50. [4]Cheng L, Cai Q W, Yu W. Coarsening of nanoscale (Ti, Mo)C precipitates in different ferritic matrixes[J]. Materials Characterization, 2018, 142: 195-202. [5]张 可, 雍岐龙, 孙新军, 等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响[J]. 金属学报, 2016, 52(5): 529-537. Zhang Ke, Yong Qilong, Sun Xinjun, et al. Effect of coiling temperature on microstructure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel[J]. Acta Metallurgica Sinica, 2016, 52(5): 529-537. [6]Huang H H, Yang G W, Zhao G, et al. Effect of Nb on the microstructure and properties of Ti-Mo microalloyed high-strength ferritic steel[J]. Materials Science and Engineering A, 2018, 736: 148-155. [7]孙超凡, 蔡庆伍, 武会宾, 等. 轧制工艺对铁素体基体Ti-Mo微合金钢纳米尺度碳氮化物析出行为的影响[J]. 金属学报, 2012, 48(12): 1415-1421. Sun Chaofan, Cai Qingwu, Wu Huibin, et al. Effect of controlled rolling processing on nanometer-sized carbonitride of Ti-Mo ferrite matrix microalloyed steel[J]. Acta Metallurgica Sinica, 2012, 48(12): 1415-1421. [8]Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J]. ISIJ International, 2004, 44: 1945-1951. [9]Lee W B, Hong S G, Park C G, et al. Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo[J]. Metallurgical and Materials Transactions A, 2002, 33(6): 1689-1698. [10]Hajyakbary F, Sietsma J, Böttger A J, et al. An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures[J]. Materials Science and Engineering A, 2015, 639: 208-218. [11]Ungár T, Ott S, Sanders P G, et al. Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis[J]. Acta Materialia, 1998, 46(10): 3693-3699. [12]Hong S G, Yong W K, Kim J H, et al. Effects of rolling temperature on the microstructure and mechanical properties of Ti-Mo microalloyed hot-rolled high strength steel[J]. Materials Science and Engineering A, 2014, 605: 244-252. [13]Kamikawa N, Ab E Y, Miyamoto G, et al. Tensile behavior of Ti, Mo-added low carbon steels with interphase precipitation[J]. ISIJ International, 2014, 54(2): 474-474. [14]Yen H W, Chen P Y, Huang C Y, et al. Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel[J]. Acta Materialia, 2011, 59(16): 6264-6274. [15]Chun E J, Do H, Kim S, et al. Effect of nanocarbides and interphase hardness deviation on stretch-flangability in 998 MPa hot-rolled steels[J]. Materials Chemistry and Physics, 2013, 140(1): 307-315. [16]Kamikawa N, Sato K, Miyamoto G, et al. Stress-strain behavior of ferrite and bainite with nano-precipitation in low carbon steels[J]. Acta Materialia, 2015, 83: 383-396. [17]Cai M H, Chen L G, Fang K, et al. The effects of a ferritic or martensitic matrix on the tensile behavior of a nano-precipitation strengthened ultra-low carbon Ti-Mo-Nb steel[J]. Materials Science and Engineering A, 2021, 801(11): 140410. [18]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [19]Sarkar B, Jha B K. Development of precipitation strengthened steel with adequate stretch flangeability[J]. Journal of Materials Engineering and Performance, 2011, 20(8): 1414-1418. [20]Wang R, Garcia C I, Hua H, et al. Microstructure and precipitation behavior of Nb, Ti complex microalloyed steel produced by compact strip processing[J]. ISIJ International, 2006, 46(9): 1345-1353. [21]Shen Y F, Wang C M, Sun X. A micro-alloyed ferritic steel strengthened by nanoscale precipitates[J]. Materials Science and Engineering A, 2011, 528(28): 8150-8156. [22]Gladman T. Precipitation hardening in metals[J]. Materials Science and Technology, 1999, 15(1): 30-36. |