[1]刘 勇, 任香会, 常云龙, 等. 金属增材制造技术的研究现状[J]. 热加工工艺, 2018, 47(19): 15-19. Liu Yong, Ren Xianghui, Chang Yunlong, et al. Research status of metal additive manufacturing technology[J]. Hot Working Technology, 2018, 47(19): 15-19. [2]Williams S W, Martina F, Addison A C, et al. Wire + arc additive manufacturing[J]. Materials Science and Technology, 2016, 32(7): 641-647. [3]赵宇辉, 王志国, 龙 雨, 等. Inconel 625镍基高温合金激光增材制造熔池温度影响因素研究[J]. 应用激光, 2015, 35(2): 137-144. Zhao Yuhui, Wang Zhiguo, Long Yu, et al. Research on in fluential factor of temperature of molten pool of Inconel 625 superalloy by laser additive manufacturing[J]. Applied Laser, 2015, 35(2): 137-144. [4]熊 俊, 郑森木, 陈 辉, 等. 电弧增材制造成形在线监测与控制研究进展及展望[J]. 电焊机, 2021, 51(8): 70-78. Xiong Jun, Zheng Senmu, Chen Hui, et al. Research progress and prospect of on-line forming monitoring and control in wire and arc additive manufacturing[J]. Electric Welding Machine, 2021, 51(8): 70-78. [5]赵宇辉, 姚 超, 王志国. 激光增材制造过程熔池温度测试及预测方法的研究[J]. 真空, 2020, 57(1): 76-82. Zhao Yuhui, Yao Chao, Wang Zhiguo. Research on test and prediction method of molten pool by laser additive maufacturing[J]. Vacuum, 2020, 57(1): 76-82. [6]余 跃, 陈学刚, 裴忠冶, 等. 高温测量技术及其在熔池测温中的应用进展[J]. 有色冶金节能, 2020(2): 6-11. Yu Yue, Chen Xuegang, Pei Zhongye, et al. High temperature measurement technology and its application in molten pool[J]. Energy Saving of Nonferrous Metallurgy, 2020(2): 6-11. [7]郭嘉琪, 黄安国, 黄 康, 等. 电子束熔丝增材制造过程在线监测技术研究现状[J]. 航空制造技术, 2018, 61(17): 57-62. Guo Jiaqi, Huang Anguo, Huang Kang, et al. Development status of on-line monitoring technology for electron beam freeform fabrication[J]. Aeronautical Manufacturing Technology, 2018, 61(17): 57-62. [8]熊江涛, 耿海滨, 林 鑫, 等. 电弧增材制造研究现状及在航空制造中应用前景[J]. 航空制造技术, 2015, 58(S2): 80-85. Xiong Jiangtao, Di Haibin, Lin Xin, et al. Research status of wire and arc additive manufacture and its application in aeronautical manufacturing[J]. Aeronautical Manufacturing Technology, 2015, 58(S2): 80-85. [9]产玉飞, 陈长军, 张 敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846. Chan Yufei, Chen Changjun, Zhang Min. Review of on-line monitoring research on metal additive manufacturing process[J]. Materials Reports, 2019, 33(17): 2839-2846. [10]Abe T, Sasahara H. Layer geometry control for the fabrication of lattice structures by wire and arc additive manufacturing[J]. Additive Manufacturing, 2019, 28: 639-648. [11]叶进余. 基于数据驱动的激光增材制造熔池温度预测控制[D]. 长沙: 湖南大学, 2016. Ye Jinyu. Data-driven based predictive control design for temperature of molten pool during laser additive manufacturing[D]. Changsha: Hunan University, 2016. [12]肖明颖, 范振红, 高华兵, 等. 金属增材制造在线监测/检测技术的研究进展[J]. 热加工工艺, 2020, 49(24): 1-7. Xiao Mingying, Fan Zhenhong, Gao Huabing, et al. Research progress of on-line monitoring/inspection technology for metal additive manufacturing[J]. Hot Working Technology, 2020, 49(24): 1-7. [13]张荣华, 宋立军. 激光增材制造熔池温度实时监测与控制[J]. 应用激光, 2018, 38(1): 13-18. Zhang Ronghua, Song Lijun. Real-time monitoring and control of melt pool temperature during laser additive manufacturing[J]. Applied Laser, 2018, 38(1): 13-18. [14]Devesse W, De Baere D, Guillaume P. Design of a model-based controller with temperature feedback for laser cladding[J]. Physics Procedia, 2014, 56: 211-219. [15]彭 程, 石 拓, 张津超, 等. TC4钛合金沉积温度闭环控制研究[J]. 应用激光, 2021, 41(2): 228-234. Peng Cheng, Shi Tuo, Zhang Jinchao, et al. Closed loop control of TC4 titanium alloy deposition temperature[J]. Applied Laser, 2021, 41(2): 228-234. [16]姜淑娟, 刘伟军. 利用图像比色法进行激光熔池温度场实时检测的研究[J]. 信息与控制, 2008, 37(6): 747-750. Jiang Shujuan, Liu Weijun. Study on real-time measurement for laser molten pool temperature field by images colorimetric method[J]. Information and Control, 2008, 37(6): 747-750. [17]宋 炜, 程延海, 澹台凡亮, 等. 激光熔覆精准再制造在线监测研究[J]. 应用激光, 2021, 41(1): 183-188. Song Wei, Cheng Yanhai, Tantai Fanliang, et al. Study on online monitoring of laser cladding accurate remanufacturing[J]. Applied Laser, 2021, 41(1): 183-188. [18]朱进前, 凌泽民, 杜发瑞, 等. 激光熔丝增材制造温度场的红外热像监测[J]. 红外与激光工程, 2018, 47(6): 145-149. Zhu Jinqian, Ling Zemin, Du Farui, et al. Monitoring of laser metal-wire additive manufacturing temperature field using infrared thermography[J]. Infrared and Laser Engineering, 2018, 47(6): 145-149. [19]柯德庆, 潘应君, 童向阳. 纯铜表面等离子喷焊Ni60涂层组织及性能的研究[J]. 表面技术, 2013, 42(4): 91-93. Ke Deqing, Pan Yingjun, Tong Xiangyang. Study on the microstructure and properties of Ni60 coating by plasma spray welding on copper[J]. Surface Technology, 2013, 42(4): 91-93. [20]李振东, 汪瑞军, 李 宏, 等. Cu基体表面PTA工艺制备Ni基耐磨层研究[J]. 热喷涂技术, 2011, 3(1): 17-21. Li Zhendong, Wang Ruijun, Li Hong, et al. Wear-resistant layer studies in a PTA overlay of Ni-base alloy on copper[J]. Thermal Spray Technology, 2011, 3(1): 17-21. [21]葛言柳, 邓德伟, 田 鑫, 等. 焊接参数对Ni60合金等离子堆焊层组织结构和显微硬度的影响[J]. 中国表面工程, 2011, 24(5): 26-31. Ge Yanliu, Deng Dewei, Tian Xin, et al. Influence of parameters on microstructure and microhardness of Ni60 alloy hardfacing by plasma transferred arc welding[J]. China Surface Engineering, 2011, 24(5): 26-31. [22]李于朋, 李 宁, 王世君, 等. 等离子喷焊Ni60A合金的组织与性能研究[J]. 长春工业大学学报, 2010, 31(4): 399-402. Li Yupeng, Li Ning, Wang Shijun, et al. Microstructure and properties of plasma spray welding Ni60A alloy[J]. Journal of Changchun University of Technology, 2010, 31(4): 399-402. |