[1]曹凤国. 激光加工[M]. 北京: 化学工业出版社, 2015. [2]赫庆坤, 宋立新. 不同厚度基体激光熔覆应力分析[J]. 激光杂志, 2018, 39(1): 60-63. He Qingkun, Song Lixin. Stress analysis of laser cladding of substrates with different thicknesses[J]. Laser Journal, 2018, 39(1): 60-63. [3]王贤才, 张亚普, 柴蓉霞. 27SiMn钢表面激光熔覆304不锈钢的组织和性能[J]. 金属热处理, 2020, 45(4): 188-193. Wang Xiancai, Zhang Yapu, Chai Rongxia. Microstructure and properties of 27SiMn steel surface laser coated with 304 stainless steel[J]. Heat Treatment of Metals, 2020, 45(4): 188-193. [4]Zhang P P, Chu J Q, Qu G, et al. Numerical simulation of convex shape beam spot on stress field of plasma-sprayed MCrAlY coating during laser cladding process[J]. The International Journal of Advanced Manufacturing Technology, 2022, 118(1): 207-217. [5]蔡春波, 李美艳, 韩 彬, 等. 不同预热温度下宽带激光熔覆铁基涂层数值模拟[J]. 应用激光, 2017, 37(1): 66-71. Cai Chunbo, Li Meiyan, Han Bin, et al. Numerical simulation iron-based cladding coating with wide-band laser at different preheating temperatures[J]. Applied Lasers, 2017, 37(1): 66-71. [6]宋建丽, 李永堂, 邓琦林, 等. 激光熔覆成形技术的研究进展[J]. 机械工程学报, 2010, 46(14): 29-39. Song Jianli, Li Yongtang, Deng Qilin, et al. Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 2010, 46(14): 29-39. [7]李金华, 安学甲, 姚芳萍, 等. H13钢激光熔覆Ni基涂层热应力循环的仿真研究[J]. 中国激光, 2021, 48(10): 33-40. Li Jinhua, An Xuejia, Yao Fangping, et al. Simulation study of thermal stress cycles in laser clad Ni-based coatings on H13 steel[J]. Chinese Journal of Lasers, 2021, 48(10): 33-40. [8]张天刚, 张 倩, 姚 波, 等. TC4表面Ni基激光熔覆层温度场和应力场的数值模拟[J]. 激光与光电子学进展, 2021, 58(3): 220-228. Zhang Tiangang, Zhang Qian, Yao Bo, et al. Numerical simulation of temperature field and stress field of Ni-based laser cladding layer on TC4 surface[J]. Laser and Optoelectronics Progress, 2021, 58(3): 220-228. [9]Guo S R, Yu J H, Cui L J, et al. Numerical simulation and experimental investigation of coaxiality change of laser cladding rotor shaft[J]. Optical Engineering, 2021, 60(12): 124106. [10]Jia Y, Wang K, Lou L. Temperature field distribution for laser cladding on axially symmetrical parts[J]. IOP Conference Series: Materials Science and Engineering, 2019, 677(2): 022083. [11]Song M, Wu L, Liu J, et al. Effects of laser cladding on crack resistance improvement for aluminum alloy used in aircraft skin[J]. Optics Laser Technology, 2021, 133: 106531. [12]王鹏飞, 杨 坤, 陈明智, 等. 倾斜基板激光熔覆GH3536熔池形貌的仿真与试验研究[J]. 中国激光, 2021, 48(10): 210-221. Wang Pengfei, Yang Kun, Chen Mingzhi, et al. Simulation and experimental research on the GH3536 molten pool laser cladding on inclined substrate[J]. Chinese Journal of Lasers, 2021, 48(10): 210-221. [13]谢林圯, 师文庆, 吴 腾, 等. 曲面基底工件激光熔覆温度场与应力场数值模拟[J]. 表面技术, 2022, 51(3): 296-303, 325. Xie Linyi, Shi Wenqing, Wu Teng, et al. Numerical simulation of temperature field and stress field of laser cladding on curved substrate workpiece[J]. Surface Technology, 2022, 51(3): 296-303, 325. [14]苏德发, 许 磊. 不锈钢表面激光熔覆FeCr涂层热行为数值模拟[J]. 重庆理工大学学报(自然科学), 2020, 34(8): 128-133. Su Defa, Xu Lei. Numerical simulation of thermal behavior of FeCr coating on stainless steel surface by laser melting[J]. Journal of Chongqing University of Technology (Natural Sciences), 2020, 34(8): 128-133. [15]詹明杰. 316L不锈钢激光增材再制造温度场及应力场的试验及数值模拟研究[D]. 南京, 东南大学, 2019. Zhan Mingjie. Experimental and numerical simulation research of temperature field and stress field in 316L stainless steel by laser addictive remanufacturing[D]. Nanjing: Southeast University, 2019. [16]李亚敏, 咬登治, 范福杰. 激光熔覆718合金工艺参数优化的数值模拟研究[J]. 应用激光, 2018, 38(6): 920-926. Li Yamin, Yao Dengzhi, Fan Fujie. Numerical simulation study on the optimization of process parameters for laser cladding of 718 alloy[J]. Applied Lasers, 2018, 38(6): 920-926. [17]郭 卫, 张亚普, 柴蓉霞, 等. 27SiMn钢表面激光熔覆304不锈钢数值模拟及试验研究[J]. 应用激光, 2019, 39(1): 35-41. Guo Wei, Zhang Yapu, Chai Rongxia, et al. Numerical simulation and experimental study of laser cladding 304 stainless steel on 27SiMn steel[J]. Applied Lasers, 2019, 39(1): 35-41. [18]韩晨阳, 孙耀宁, 王国建, 等. 不锈钢冷轧辊激光表面修复工艺研究[J]. 应用激光, 2020, 40(4): 598-604. Han Chenyang, Sun Yaoning, Wang Guojian, et al. Study on laser surface repair technology of stainless steel cold roll[J]. Applied Lasers, 2020, 40(4): 598-604. |