[1]Guan H, Luo A H. Development and application of a new hot-work die steel for hot stamping[J]. Baosteel Technology Research, 2017, 11(2): 11-17. [2]Chen S H, Li S, Wu X C. High temperature friction and wear property of hot stamping tool steel SDCM[J]. Tribology, 2016, 36(5): 538-545. [3]Zhou Q C, Wu X C, Shi N N, et al. Microstructure evolution and kinetic analysis of DM hot-working die steels during tempering[J]. Materials Science and Engineering A, 2011, 528(18): 5696-5700. [4]Mao W W, Ning A G, Guo H J. Nanoscale precipitates and comprehensive strengthening mechanism in AISI H13 steel[J]. International Journal of Minerals Metallurgy & Materials, 2016, 23(9): 1056-1064. [5]Mao Mingtao, Guo Hanjie, Wang Fei, et al. Chemical composition and structural identification of primary carbides in as-cast H13 steel[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26 (7): 839-848. [6]Erry Yulian T Adesta, Muhammad Riza, Avicena. Comparative investigation on tool wear during end milling of AISI H13 steel with different tool path strategies[J]. IOP Conference Series: Materials Science and Engineering, 2018, 343: 012020. [7]Li Hongbo, Li Ban, Deng Chengxu, et al. Morphology and wear resistance of HVOF sprayed H13-WC/Ni gradient coating on H13 steel surface[J]. Journal of Physics: Conference Series, 2019, 1213(5): 052020. [8]Liu Yu, Qin Shengwei, Zuo Xunwei. Investigation of quenching stress of 42CrMo treated by alternately timed quenching process[J]. Heat Treatment and Surface Engineering, 2015, 1(1-2): 23-31. [9]杨福宝, 白秉哲, 刘东雨, 等. 无碳化物贝氏体-马氏体复相高强度钢的组织与性能[J]. 金属学报, 2004, 40(3): 296-300. Yang Fubao, Bai Bingzhe, Liu Dongyu, et al. Microstructure and properties of a carbide-free bainite/martensite ultra-high strength steel[J]. Acta Metallurgica Sinica, 2004, 40(3): 296-300. [10]Matsumura O, Sakuma Y, Takechi H. Trip and its kinetic aspects in austempered 0.4C-1.5Si-0.8Mn steel[J]. Scripta Metallurgica, 1987, 21(10): 1301-1306. [11]田保红, 郑世安. 马氏体-下贝氏体复相组织强韧化机理研究及实际应用[J]. 河南科技大学学报: 自然科学版, 1993(4): 29-34. Tian Baohong, Zheng Shian. Strengthening and toughening mechanism of martensite-lower bainite duplex structure and its application[J]. Journal of Henan University of Science and Technology (Natural Science), 1993(4): 29-34. [12]崔君军, 陈礼清, 李海智, 等. 等温淬火低合金贝氏体球墨铸铁的回火组织与力学性能[J]. 金属学报, 2016, 52(7): 778-786. Cui Junjun, Chen Liqing, Li Haizhi, et al. Tempering structure and mechanical properties of isothermally quenched low alloy bainite ductile iron[J]. Acta Metallurgica Sinica, 2016, 52(7): 778-786. [13]何文超, 李志敏, 张 旭, 等. 贝氏体等温淬火对H13热作模具钢组织及热疲劳性能的影响[J]. 材料热处理学报, 2021, 42(5): 81-87. He Wenchao, Li Zhimin, Zhang Xu, et al. Effect of bainite isothermal quenching on microstructure and thermal fatigue performance of H13 hot working die steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(5): 81-87. [14]张 朋, 张福成, 王天生, 等. 低碳合金钢表面硬贝氏体的制备及其组织特征[J]. 材料热处理学报, 2009, 30(4): 44-47. Zhang Peng, Zhang Fucheng, Wang Tiansheng, et al. Preparation and microstructural characterization of hard bainite in surface layer of low-carbon alloy steel[J]. Transactions of Materials and Heat Treatment, 2009, 30(4): 44-47. [15]张 朋, 张福成, 王天生. 渗碳 20CrMnMoAl 钢表面硬贝氏体的制备及其组织特征[J]. 金属学报, 2011, 47(8): 1038-1045. Zhang Peng, Zhang Fucheng, Wang Tiansheng, et al. Preparation and microstructure of hardbainite in surface layer of carburized 20CrMnMoAl steel[J]. Acta Metallurgica Sinica, 2011, 47(8): 1038-1045. [16]刘健波, 张学宾, 杨留栓, 等. 等温淬火时间对 D2 钢组织与力学性能的影响[J]. 材料热处理学报, 2019, 40(8): 110-115. Liu Jianbo, Zhang Xuebin, Yang Liushuan, et al. Effect of austempering time on microstructure and mechanical properties of D2 steel[J]. Transactions of Materials and Heat Treatment, 2019, 40(8): 110-115. [17]张 君, 董笑鹏. 钢的(M+B)复相热处理技术研究[J]. 机电产品开发与创新, 2007, 20(5): 3-4. Zhang Jun, Dong Xiaopeng. Development of steel in (M+B) duplex heat treatment[J]. Development and Innovation of Machinery and Electrical Products, 2007, 20(5): 3-4. [18]刘 波, 黄晓艳. 国家标准《金属材料硬度值的换算》解读[J]. 铸造技术, 2018, 39(3): 736-738. Liu Bo, Huang Xiaoyan. Interpretation of national standard “conversion of hardness values of metallic materials”[J]. Foundry Technology, 2018, 39(3): 736-738. [19]Wilson J E, Stott F H, Wood G C. The development of wear-protective oxides and their influence on sliding friction[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 1980, 369(1739): 557-574. [20]吴 帅, 付航涛, 连 勇, 等. 一种新型热作模具钢的高温磨损性能研究[J]. 摩擦学学报, 2016, 36(1): 104-109. Wu Shuai, Fu Hangtao, Lian Yong, et al. Investigation on high temperature wear behavior of a newly developed hot-work tool steel[J]. Tribology, 2016, 36(1): 104-109. [21]Ma Ye, Yue Caichao, Liu Ming, et al. Effects of heat treatment on microstructure and mechanical properties of new hot work die steel[J]. Die and Mould Manufacture, 2018, 18(2): 82-85. [22]Archard J F, Hirst W. The wear of metals under unlubricated conditions[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1956, 236 (1206): 397-410. [23]Wei Minxian, Wang Shuqi, Cui Xianghong. Comparative research on wear characteristics of spheroidal graphite cast iron and carbon steel[J]. Wear, 2012, 274: 84-93. [24]Wang Shuqi, Wang Feng, Cui Xianghong, et al. Effect of secondary carbides on oxidation wear of the Cr-Mo-V cast steels[J]. Materials Letters, 2008, 62: 279-281. [25]张秋阳, 丁红燕, 周广宏, 等. 含Fe2O3摩擦层的促进形成对H13和45钢磨损性能的影响[J]. 摩擦学学报, 2017, 37(6): 823-830. Zhang Qiuyang, Ding Hongyan, Zhou Guanghong, et al. Formation of tribo-layer in the presence of Fe2O3 particles and its influence on wear performance of H13 and 45 steel[J]. Tribology, 2017, 37(6): 823-830. [26]Wang Shuqi, Wei Minxian, Zhao Yutao. Effects of the tribo-oxide and matrix on dry sliding wear characteristics and mechanisms of a cast steel[J]. Wear, 2010, 269(5/6): 424-434. [27]王树奇, 崔向红, 陈康敏, 等. 精铸热锻模具钢的合金成分设计及其高温磨损性能研究[J]. 摩擦学学报, 2006, 26(4): 382-386. Wang Shuqi, Cui Xianghong, Chen Kangmin, et al. Alloying design and high-temperature wear property of cast hot-forging die steel[J]. Tribology, 2006, 26(4): 382-386. [28]陈 磊, 姜 伟, 崔向红, 等. 不同滑动条件下H13钢的高温磨损行为[J]. 润滑与密封, 2021, 46(4): 122-129. Chen Lei, Jiang Wei, Cui Xianghong, et al. High temperature wear behaviors of H13 steel under different sliding conditions[J]. Lubrication Engineering, 2021, 46(4): 122-129. [29]段明伟, 王志航, 黄英豪, 等. H13钢激光涂覆层的高温磨损性能[J]. 钢铁钒钛, 2019, 40(3): 136-141. Duan Mingwei, Wang Zhihang, Huang Yinghao, et al. High temperature wear behavior of laser coating on H13 steel[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 136-141. [30]Wei M X, Wang F, Wang S Q, et al. Comparative research on the elevated-temperature wear resistance of a cast hot-working die steel[J]. Materials and Design, 2009, 30(9): 3608-3614. [31]隋鹤龙. 新型高Cr热作模具钢的组织与性能[D]. 长春: 吉林大学, 2006. [32]谢冬柏, 高 飞, 王福会, 等. H13 钢的马氏体/贝氏体组织与性能[J]. 金属热处理, 2002, 27(5): 11-14. Xie Dongbai, Gao Fei, Wang Fuhui, et al. M/B microstructure and mechanical properties of H13 steel[J]. Heat Treatment of Metals, 2002, 27(5): 11-14. [33]桂晓露, 张宝祥, 高古辉, 等. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究[J]. 金属学报, 2016, 52(9): 1036-1044. Gui Xiaolu, Zhang Baoxiang, Gao Guhui, et al. Fatigue behavior of bainite/martensite multiphase high strength steel treated by quenching-partitioning-tempering process[J]. Acta Metallurgica Sinica, 2016, 52(9): 1036-1044. |