[1]Bajaj P, Hariharan A, Ini A, et al. Steels in additive manufacturing: A review of their microstructure and properties[J]. Materials Science & Engineering A, 2020, 772: 138633. [2]李 斌, 董秀萍, 黄明吉. 热处理对 SLM 316L 不锈钢螺旋微丝微观组织和力学性能的影响[J]. 金属热处理, 2021, 46(7): 103-107. Li Bin, Dong Xiuping, Huang Mingji. Effect of heat treatment on microstructure and mechanical properties of SLM 316L stainless steel spiral microwire[J]. Heat Treatment of Metals, 2021, 46(7): 103-107. [3]徐东东, 陈 旸, 许 昊, 等. 超高强度马氏体时效钢研究进展[J]. 精密成形工程, 2021, 13(5): 100-108. Xu Dongdong, Chen Yang, Xu Hao, et al. Research progress of ultra-high strength maraging steel[J]. Journal of Netshape Forming Engineering, 2021, 13(5): 100-108. [4]尹 航, 李金许, 宿彦京, 等. 马氏体时效钢的研究现状与发展[J]. 钢铁研究学报, 2014, 26(3): 1-4. Yin Hang, Li Jinxu, Su Yanjing, et al. Current situation and development of maraging steel[J]. Journal of Iron and Steel Research, 2014, 26(3): 1-4. [5]Mutua J, Nakata S, Onda T, et al. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel[J]. Materials & Design, 2017, 139: 486-497. [6]Prashanth K G, Eckert J. Formation of metastable cellular microstructures in selective laser melted alloys[J]. Journal of Alloys and Compounds, 2017, 707: 27-34. [7]Bai Y C, Yang Y Q, Wang D, et al. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting[J]. Materials Science and Engineering A, 2017, 703: 116-123. [8]董福元, 张明旭, 侯俊峰. 时效时间对SLM 18Ni300马氏体时效钢组织性能的影响[J]. 金属热处理, 2021, 46(6): 88-91. Dong Fuyuan, Zhang Mingxu, Hou Junfeng. Effect of aging time on microstructure and mechanical properties of SLM 18Ni300 maraging steel[J]. Heat Treatment of Metals, 2021, 46(6): 88-91.[9]Kürnsteiner P, Wilms M B, Weisheit A, et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition[J]. Acta Materialia, 2017, 129: 52-60. [10]Zheng B, Zhou Y, Smugeresky J E, et al. Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: Part II. Experimental investigation and discussion[J]. Metallurgical and Materials Transactions A, 2008, 39(9): 2237-2245. [11]谭超林, 周克崧, 马文有, 等. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52. Tan Chaolin, Zhou Kesong, Ma Wenyou, et al. Research progress of laser additive manufacturing of maraging steels[J]. Acta Metallurgica Sinica, 2020, 56(1): 36-52. [12]Kong D C, Dong C F, Wei S L, et al. About metastable cellular structure in additively manufactured austenitic stainless steels[J]. Additive Manufacturing, 2021, 38: 101804. [13]Zhang S Q, Xu D Y, Huang F, et al. Mitigation of hydrogen embrittlement in ultra-high strength lath martensitic steel via Ta microalloying[J]. Materials and Design, 2021, 210: 110090. [14]黄运华, 陈 恒, 赵起越, 等. 高强度低合金钢中纳米析出相对腐蚀行为影响的研究进展[J]. 工程科学学报, 2021, 43(3): 321-331. Huang Yunhua, Chen Heng, Zhao Qiyue, et al. Influence of nanosized precipitate on the corrosion behavior of high-strength low-alloy steels[J]. Chinese Journal of Engineering, 2021, 43(3): 321-331. |