[1]Li D, Wu J, Miao B, et al. Enhancement of wear resistance by sand blasting-assisted rapid plasma nitriding for 304 austenitic stainless steel[J]. Surface Engineering, 2019, 96(5): 1-7. [2]Li L Y, Wang J, Tang Z H, et al. Low-temperature nitrocarburizing of austenitic stainless steel for combat corrosion in H2S environments[J]. Metallurgical and Materials Transactions A, 2020, 51(8): 4242-4256. [3]Ciacotich N, Din R U, Sloth J J, et al. An electroplated copper-silver alloy as antibacterial coating on stainless steel[J]. Surface and Coatings Technology, 2018, 345: 96-104. [4]Rivera L R, Cochis A, Biser S, et al. Antibacterial, pro-angiogenic and pro-osteointegrative zein-bioactive glass/copper based coatings for implantable stainless steel aimed at bone healing[J]. Bioactive Materials, 2021, 6(5): 1479-1490. [5]Rashid S, Sebastiani M, Mughal M Z, et al. Influence of the silver content on mechanical properties of Ti-Cu-Ag thin films[J]. Nanomaterials (Basel), 2021, 11(2): 435-449. [6]Haruman E, Sun Y, Adenan M S. A comparative study of the tribocorrosion behaviour of low temperature nitrided austenitic and duplex stainless steels in NaCl solution[J]. Tribology International, 2020, 151: 204612-204623. [7]Kovacs D, Dobranszky J, Fodor T, et al. Investigation of the ASPN process of low alloy steel by using Ni or Cr coated active screens[J]. Surface & Coatings Technology, 2020, 394: 125638-125648. [8]Dong Y C, Li X Y, Bell T, et al. Surface microstructure and antibacterial property of an active-screen plasma alloyed austenitic stainless steel surface with Cu and N[J]. Biomedical Materials, 2010, 5(5): 054105. [9]Tian L H, Li X Y, Dong H S. Novel wear-resistant anti-bacterial stainless steel surfaces[J]. Surface Engineering, 2018, 34(8): 577-587. [10]Wang X W, Liu Z Y, Chen Y Y, et al. Abrasive resistance and corrosion properties of AISI 316 sieve via low-temperature gaseous nitriding[J]. Surface & Coatings Technology, 2019, 361: 349-356. [11]Hirano M, Hashimoto M, Miura K, et al. Fabrication of antibacterial nanopillar surface on AISI 316 stainless steel through argon plasma etching with direct current discharge[J]. Surface & Coatings Technology, 2021, 406: 126680-126688. [12]Mariano S F M, Ueda M. Hollow cathode effects observed in magnetically confined plasmas used for deposition of DLC films via PIII&D in tubes[J]. Applied Surface Science, 2019, 465: 824-832. [13]Ji X C, Li X Y, Yu H L, et al. Study on the carbon nanotubes reinforced nanocomposite coatings[J]. Diamond and Related Materials, 2019, 91: 247-254. [14]Taherkhani K, Soltanieh M. Spectroscopy study of composite coating created by a new method of active screen plasma nitriding on pure aluminum[J]. Surface & Coatings Technology, 2020, 393: 125820-125831. [15]Lin K J, Li X Y, Dong H S, et al. Nitrogen mass transfer and surface layer formation during the active screen plasma nitriding of austenitic stainless steels[J]. Vacuum, 2018, 148: 224-229. [16]Kucukyildiz O C, Grumsen F B, Christiansen T L, et al. Anisotropy effects on gaseous nitriding of austenitic stainless steel single crystals[J]. Acta Materialia, 2020, 194: 168-177. [17]Adachi S, Ueda N. Formation of S-phase layer on plasma sprayed AISI 316L stainless steel coating by plasma nitriding at low temperature[J]. Thin Solid Films, 2012, 523: 11-14. [18]Liu L T, Li Y Z, Yu K P, et al. A novel stainless steel with intensive silver nanoparticles showing superior antibacterial property[J]. Materials Research Letters, 2021, 9(6): 270-277. |