[1]王贤才, 张亚普, 柴蓉霞. 27SiMn钢表面激光熔覆304不锈钢的组织和性能[J]. 金属热处理, 2020, 45(4): 188-193. Wang Xiancai, Zhang Yapu, Chai Rongxia. Microstructure and properties of 304 stainless steel laser cladding on 27SiMn steel surface[J]. Heat Treatment of Metals, 2020, 45(4): 188-193. [2]Schopphoven Thomas, Gasser Andres, Backes Gerhard. EHLA: Extreme high-speed laser material deposition[J]. Wiley, 2017(4): 26-29. [3]刘德来, 王 博, 周攀虎, 等. 激光功率对高速激光熔覆Ni/316L层组织与力学性能的影响[J]. 金属热处理, 2021, 46(5): 213-218. Liu Delai, Wang Bo, Zhou Panhu, et al. Effect of laser power on microstructure and mechanical properties of high-speed laser clad Ni/316L layer[J]. Heat Treatment of Metals, 2021, 46(5): 213-218. [4]黄 旭, 张家诚, 练国富, 等. 超高速激光熔覆研究现状及应用[J]. 机床与液压, 2021, 49(6): 151-155, 162. Huang Xu, Zhang Jiacheng, Lian Guofu, et al. Research status and application of extreme high speed cladding[J]. Machine Tool & Hydraulics, 2021, 49(6): 151-155, 162. [5]王 强, 杨 驹, 牛文娟, 等. 高速激光熔覆铁基TY-2合金组织及力学性能分析[J]. 表面技术, 2021, 50(7): 66-73. Wang Qiang, Yang Ju, Niu Wenjuan, et al. Microstructure andmechanical properties of Fe-based TY-2 alloy coatings by high-speed laser cladding[J]. Surface Technology, 2021, 50(7): 66-73. [6]王彦芳, 赵晓宇, 陆文俊, 等. 抽油杆接箍表面高速激光熔覆不锈钢涂层的组织与性能[J]. 中国激光, 2021, 48(6): 175-184. Wang Yanfang, Zhao Xiaoyu, Lu Wenjun, et al. Microstructure andproperties of high speed laser cladding stainless steel coating on sucker rod coupling surfaces[J]. Chinese Journal of Lasers, 2021, 48(6): 175-184. [7]王 聪, 石世宏, 方琴琴, 等. 空间多元密排扭曲薄壁件的激光熔覆成形研究[J]. 中国激光, 2017, 44(6): 108-117. Wang Cong, Shi Shihong, Fang Qinqin, et al. Research on laser cladding forming of close-packed multivariant twisty thin-wall parts[J]. Chinese Journal of Lasers, 2017, 44(6): 108-117. [8]王 浩, 李 欣, 曲玉龙, 等. 热处理对激光熔覆Ni/316L堆焊层组织与性能的影响[J]. 热加工工艺, 2022(9): 40-42, 51. Wang Hao, Li Xin, Qu Yulong, et al. Effect of heat treatment on microstructure and properties of laser-cladded Ni/316L coating[J]. Hot Working Technology, 2022(9): 40-42, 51. [9]Zhang Qiang, Ren Pan, Tu Xiaohui, et al. Effect of heat treatment on microstructure evolution and mechanical properties of selective laser melted Inconel 718 alloy[J]. Journal of Materials Engineering and Performance, 2019, 28(9): 5376-5386. [10]Huang Liang, Cao Yan, Wang Yuanfei. Effect of heat treatment on the microstructure evolution and mechanical behaviour of a selective laser melted Inconel 718 alloy[J]. Journal of Alloys and Compounds, 2021, 865(16): 158613. [11]张 勤. 激光熔覆IN718合金树枝晶转向生长行为及元素偏析抑制研究[D]. 杭州: 浙江工业大学, 2020. Zhang Qin. Study ondendritic growth transition and element segregation inhibition of IN718 superalloy fabricated by laser cladding[D]. Hangzhou: Zhejiang University of Technology, 2020. [12]王彦芳, 李 豪, 孙 旭, 等. 宽带激光熔覆铁基非晶涂层的微观组织及形成机制[J]. 中国激光, 2018, 45(3): 1-11. Wang Yanfang, Li Hao, Sun Xu, et al. Microstructures and formation mechanism of Fe-based amorphous coatings by broad-band laser cladding[J]. Chinese Journal of Lasers, 2018, 45(3): 1-11. [13]丁 利, 李怀学, 王玉岱, 等. 热处理对激光选区熔化成形316不锈钢组织与拉伸性能的影响[J]. 中国激光, 2015, 42(4): 187-193. Ding Li, Li Huaixue, Wang Yudai, et al. Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42(4): 187-193. [14]宋 衎, 喻 凯, 林 鑫, 等. 热处理态激光立体成形Inconel 718高温合金的组织及力学性能[J]. 金属学报, 2015, 51(8): 935-942. Song Kan, Yu Kai, Lin Xin, et al. Microstructure and mechanical properties of heat treatment laser solid forming superalloy Inconel 718[J]. Acta Metallurgica Sinica, 2015, 51(8): 935-942. [15]徐金涛, 李 安, 刘 栋, 等. 激光熔覆Cr3Si/γ多相涂层耐蚀性和耐磨性研究[J]. 中国激光, 2016, 43(3): 72-78. Xu Jintao, Li An, Liu Dong, et al. Research on corrosion resistance and wear resistance of laser cladding Cr3Si/γ multi-phase coating[J]. Chinese Journal of Lasers, 2016, 43(3): 72-78. [16]张志虎, 孙文磊, 黄 勇, 等. 高速激光熔覆和重熔复合技术制备铁基涂层的组织性能研究[J]. 激光与光电子学进展, 2021, 58(21): 206-213. Zhang Zhihu, Sun Wenlei, Huang Yong, et al. Microstructures and properties of Fe-based coating prepared by high-speed laser cladding and remelting[J]. Laser & Optoelectronics Progress, 2021, 58(21): 206-213. [17]候韶凯, 马幼平, 杨 蕾. 固态扩散条件下C在M7C3与M23C6碳化物转变中的作用[J]. 金属热处理, 2019, 44(5): 62-66. Hou Shaokai, Ma Youping, Yang Lei. Main controlling element of M7C3 and M23C6 carbides transformation in solid state diffusion[J]. Heat Treatment of Metals, 2019, 44(5): 62-66. [18]柏 伟, 张爱军, 孟军虎, 等. (CuMnNi)100-xAlx高熵铜合金的显微组织、力学与摩擦学性能研究[J]. 摩擦学学报, 2021, 41(5): 609-618. Bai Wei, Zhang Aijun, Meng Junhu, et al. Microstructure, mechanical and tribological properties of (CuMnNi)100-xAlx high entropy bronzes[J]. Tribology, 2021, 41(5): 609-618. [19]刘 双, 王勤英, 西宇辰, 等. 热处理对铁基激光熔覆层力学及耐腐蚀性能的影响[J]. 激光与光电子学进展, 2019, 56(12): 1-14. Liu Shuang, Wang Qinying, Xi Yuchen, et al. Effect of heat treatment on mechanical and anti-corrosion properties of Fe-based laser cladded coatings[J]. Laser & Optoelectronics Progress, 2019, 56(12): 1-14. [20]田景来, 叶芳霞, 钟黎声, 等. 原位生成M7C3颗粒束增强铁基复合材料的微观组织研究[J]. 热加工工艺, 2013(16): 107-109. Tian Jinglai, Ye Fangxia, Zhong Lisheng, et al. Research on microstructure of in-situ production of (Fe,Cr)7C3 particulate bundles reinforced iron matrix composite[J]. Hot Working Technology, 2013(16): 107-109. |