[1]李涤尘, 贺健康, 田小永, 等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报, 2013, 49(6): 129-135. Li Dichen, He Jiankang, Tian Xiaoyong, et al. Additive manufacturing: Integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering, 2013, 49(6): 129-135. [2]高绪杰, 郭娜娜, 朱光明, 等. 激光熔覆制备高熵合金涂层的研究进展[J]. 表面技术, 2019, 48(6): 107-117. Gao Xujie, Guo Nana, Zhu Guangming, et al. Research progress of high entropy alloy coatings prepared by laser cladding[J]. Surface Technology, 2019, 48(6): 107-117. [3]孙 博, 夏 铭, 张志彬, 等. 难熔高熵合金性能调控与增材制造[J]. 材料工程, 2020, 48(10): 1-16. Sun Bo, Xia Ming, Zhang Zhibin, et al. Property control and additive manufacturing of refractory high entropy alloys[J]. Journal of Materials Engineering, 2020, 48(10): 1-16. [4]卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31(1): 19-23. Lu Bingheng. Additive manufacturing technology—Present situation and future[J]. China Mechanical Engineering, 2020, 31(1): 19-23. [5]Beckers D, Ellendt N, Fritsching U, et al. Impact of process flow conditions on particle morphology in metal powder production via gas atomization[J]. Advanced Powder Technology, 2019, 31(1):300-311. [6]Eo D R, Park S H, Cho J W. Inclusion evolution in additive manufactured 316L stainless steel by laser metal deposition process[J]. Materials & Design, 2018, 155: 212-219. [7]Zbilen S, Nal A, Sheppard T. Influence of superheat on particle shape and size of gas atomised copper powders[J]. Powder Metallurgy, 2013, 34(1): 53-61. [8]Chen G, Zhao S Y, Tan P, et al. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization[J]. Powder Technology, 2018, 333: 38-46. [9]彭海燕, 康志新, 李小珍, 等. 球磨时间对NbMoTaWVCr难熔高熵合金组织与性能的影响[J]. 粉末冶金材料科学与工程, 2020, 25(6): 513-519. Peng Haiyan, Kang Zhixin, Li Xiaozhen, et al. Effect of ball milling time on microstructure and properties of NbMoTaWVCr refractory high entropy alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(6): 513-519. [10]Yang X, Sun D, Zhou Y, et al. A novel, non-equiatomic NiCrWFeTi high-entropy alloy with exceptional phase stability[J]. Materials Letters, 2019, 263: 127202. [11]Yeh J W, Chen S K, Lin S J, et al. Nanostructuredhigh-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [12]Soto A O, Salgado A S, Nio E B. Thermodynamic analysis of high entropy alloys and their mechanical behavior in high and low-temperature conditions with a microstructural approach[J]. Intermetallics, 2020, 124: 106850. [13]路 阳, 成 波, 王军伟, 等. 铁铬镍基高温合金耐熔融NaCl腐蚀性研究[J]. 稀有金属材料与工程, 2014(1): 17-23. Lu Yang, Cheng Bo, Wang Junwei, et al. Research on resistance of Fe-Cr-Ni base superalloy to NaCl corrosion in melting[J]. Rare Metal Materials and Engineering, 2014(1): 17-23. [14]刘 彬, 付 遨, 刘 咏. 一种高耐蚀高强韧FeCrNi系多主元合金及其制备方法: CN111321335A[P]. 2020. Liu Bin, Fu Ao, Liu Yong. A High corrosion resistance high strength and toughness FeCrNi series multi-principal element alloy and its preparation method: CN111321335A[P]. 2020. [15]Polozov I, Sufiiarov V, Kantyukov A, et al. Microstructure, densification, and mechanical properties of titanium intermetallic alloy manufactured by laser powder bed fusion additive manufacturing with high-temperature preheating using gas atomized and mechanically alloyed plasma spheroidized powders[J]. Additive Manufacturing, 2020, 34: 101374. |