[1]霍望图, 孙涛涛, 雷诚心, 等. 高强7000(Al-Zn-Mg-Cu)系铝合金成形性研究进展[J]. 中国材料进展, 2020, 39(12): 924-933. Huo Wangtu, Sun Taotao, Lei Chengxin, et al. Research progress on formability of high-strength 7000 (Al-Zn-Mg-Cu) series aluminum alloy[J]. Materials China, 2020, 39(12): 924-933. [2]李贝贝, 王元清, 支新航, 等. 我国7×××系高强铝合金及其研究进展[J]. 建筑钢结构进展, 2021, 23(7): 1-10. Li Beibei, Wang Yuanqing, Zhi Xinhang, et al. A review on the research of the 7××× series high strength aluminum alloys as structural material in China[J]. Progress in Steel Building Structures, 2021, 23(7): 1-10. [3]姬 浩. 7000系高强铝合金的发展及其在飞机上的应用[J]. 航空科学技术, 2015(6): 75-78. Ji Hao. Development and application of 7000 high strength aluminum alloys on airplane[J]. Aeronautical Science and Technology, 2015(6): 75-78. [4]Yang W, Ji S, Zhang Q, et al. Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of η′ precipitate[J]. Materials & Design, 2015, 85: 752-761. [5]王 俊, 周 全, 吴 晗, 等. 脉冲磁场下制备Al-20Si功能梯度材料的研究[J]. 特种铸造及有色合金, 2018(2): 222-226. Wang Jun, Zhou Quan, Wu Han, et al. Preparation of Al-20Si functionally gradient materials under pulsed magnetic field[J]. Special Casting and Nonferrous Alloys, 2018(2): 222-226. [6]龙文元, 刘 煊, 刘伟国. 脉冲磁场-倾斜管复合法制备铝合金半固态组织的研究[J]. 特种铸造及有色合金, 2017, 37(2): 121-124. Long Wenyuan, Liu Xuan, Liu Weiguo. Microstructure ofsemi-solid aluminum alloy prepared by pulsed magnetic field inclined pipe casting compound preparation method[J]. Special Casting and Nonferrous Alloys, 2017, 37(2): 121-124. [7]Zhang L, Zhan W, Jin F, et al. Microstructure and properties of A357 aluminum alloy treated by pulsed magnetic field[J]. Materials Science and Technology, 2018, 34(6): 698-702. [8]白庆伟, 麻永林, 邢淑清, 等. 铝合金表面脉冲电磁场对半连续铸造晶粒的细化[J]. 工程科学学报, 2017, 39(12): 1828-1834. Bai Qingwei, Ma Yonglin, Xing Shuqing, et al. Refining of a DC-casting aluminum alloy structure using surface electromagnetic pulsing[J]. Chinese Journal of Engineering, 2017, 39(12): 1828-1834. [9]闫春雷, 沈 利, 鲍鑫宇, 等. 脉冲磁场及Al-5Ti-1B中间合金对工业纯铝凝固组织的影响[J]. 轻合金加工技术, 2020, 48(10): 17-20, 30. Yan Chunlei, Shen Li, Bao Xinyu, et al. Effects of pulsed magnetic field and Al-5Ti-1B master alloy on solidification structure of industrial pure aluminum[J]. Light Alloy Fabrication Technology, 2020, 48(10): 17-20, 30. [10]于文霞, 邢淑清, 蒙耀鑫, 等. 加磁场时效工艺对7A04铝合金析出物的影响[J]. 金属热处理, 2019, 44(5): 182-186. Yu Wenxia, Xing Shuqing, Meng Yaoxin, et al. Effect of magnetic field on precipitates of 7A04 aluminum alloy during solution treating and aging[J]. Heat Treatment of Metals, 2019, 44(5): 182-186. [11]陈华宇. 锻态7050铝合金热处理工艺研究 [D]. 秦皇岛: 燕山大学, 2015. Chen Huayu. Study on heat treatment of the forging 7050 aluminum alloy [D]. Qinhuangdao: Yanshan University, 2015. [12]王 祥. 7050铝合金热处理工艺研究 [D]. 长沙: 湖南大学, 2017. Wang Xiang. Research on heat treatment of 7050 aluminum alloy [D]. Changsha: Hunan University, 2017. [13]孙 杰, 房洪杰, 刘 慧, 等. 7085铝合金的热处理工艺[J]. 金属热处理, 2019, 44(2): 187-191. Sun Jie, Fang Hongjie, Liu Hui, et al. Heat treatment processes of 7085 aluminum alloy[J]. Heat Treatment of Metals, 2019, 44(2): 187-191. [14]赵天生, 方 羽, 孙誉宾. 成形速度对7050铝合金锻件力学性能和断口形貌的影响[J]. 金属热处理, 2022, 47(6): 103-107. Zhao Tiansheng, Fang Yu, Sun Yubin. Effect of forming speed on mechanical properties and fracture morphology of 7050 aluminum alloy forgings[J]. Heat Treatment of Metals, 2022, 47(6): 103-107. [15]姚 泽, 钟立伟, 卢影峰, 等. 二级时效温度对7B04-T74铝合金薄板组织及性能的影响[J]. 金属热处理, 2021, 46(10): 86-91. Yao Ze, Zhong Liwei, Lu Yingfeng, et al. Effect of secondary aging temperature on microstructure and properties of 7B04-T74 aluminum alloy sheet[J]. Heat Treatment of Metals, 2021, 46(10): 86-91. [16]彭 林. 磁场对Mg-Al扩散偶扩散行为及ECAP工业纯铝退火过程的影响[D]. 沈阳:东北大学, 2015. Peng Lin. The influence of magnetic field on diffusion behavior in Mg-Al diffusion couple and annealing process in commercial pure aluminum after ECAP[D]. Shenyang: Northeastern University, 2015. [17]周泽宇, 肖 翔, 郑志凯, 等. 退火工艺对Al-Zr-Er系高导铝合金组织和性能的影响[J]. 金属热处理, 2021, 46(9): 108-115. Zhou Zeyu, Xiao Xiang, Zheng Zhikai, et al. Effect of annealing process on microstructure and properties of Al-Zr-Er high conductivity aluminum alloy[J]. Heat Treatment of Metals, 2021, 46(9): 108-115. [18]王小娜, 韩利战, 顾剑锋. 铝合金时效析出动力学及强化模型[J]. 中国有色金属学报, 2013, 23(10): 2754-2768. Wang Xiaona, Han Lizhan, Gu Jianfeng.Aging precipitation kinetics and strengthening models for aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(10): 2754-2768. [19]白庆伟, 麻永林, 邢淑清, 等. 可控电磁能(CEME)时效处理下Al-Zn-Mg-Cu合金的析出及强化机理研究[J]. 材料导报, 2021, 35(20): 20143-20148, 20160. Bai Qingwei, Ma Yonglin, Xing Shuqing, et al. Precipitation and strengthening mechanism of Al-Zn-Mg-Cu alloy under controllable electromagnetic energy (CEME) aging treatment[J]. Materials Reports, 2021, 35(20): 20143-20148, 20160. [20]胡赓祥. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010. |