[1]赵征志, 陈伟健, 高鹏飞, 等. 先进高强度汽车用钢研究进展及展望[J]. 钢铁研究学报, 2020, 32(12): 1059-1076. Zhao Zhengzhi, Chen Weijian, Gao Pengfei, et al. Progress and perspective of advanced high strength automotive steel[J]. Journal of Iron and Steel Research, 2020, 32(12): 1059-1076. [2]Pathak N, Butcher C, Worswick M. Assessment of thecritical parameters influencing the edge stretchability of advanced high-strength steel sheet[J]. Journal of Materials Engineering and Performance, 2016, 25(11): 4919-4932. [3]王存宇, 杨 洁, 常 颖, 等. 先进高强度汽车钢的发展趋势与挑战[J]. 钢铁, 2019, 54(2): 1-6. Wang Cunyu, Yang Jie, Chang Ying, et al. Development trend and challenge of advanced high strength automobile steels[J]. Iron and Steel, 2019, 54(2): 1-6. [4]马 涛, 李慧蓉, 高建新, 等. Fe-Mn-Al-C低密度钢强化机制与拉伸性能研究进展及Nb微合金化展望[J]. 材料导报, 2020, 34(23): 23154-23164. Ma Tao, Li Huirong, Gao Jianxin, et al. Progress on strengthening mechanism and tensile properties of Fe-Mn-Al-C low density steel and prospect of Nb microalloying[J]. Materials Reports, 2020, 34(23): 23154-23164. [5]徐 勇, 曾祥成, 田亚强, 等. 冷轧双相钢板材的力学性能各向异性实验研究[J]. 塑性工程学报, 2021, 28(7): 124-130. Xu Yong, Zeng Xiangcheng, Tian Yaqiang, et al. Experimental study on anisotropy of mechanical properties of cold-rolled dual-phase steel sheet[J]. Journal of Plasticity Engineering, 2021, 28(7): 124-130. [6]詹 华, 潘红波, 刘永刚, 等. 合金元素与退火工艺对冷轧双相钢组织和性能的影响[J]. 金属热处理, 2015, 40(5): 20-24. Zhan Hua, Pan Hongbo, Liu Yonggang, et al. Effects of alloy and annealing process on microstructure and properties of cold rolled dual-phase steel[J]. Heat Treatment of Metals, 2015, 40(5): 20-24. [7]Li C, Li Z, Cen Y, et al. Microstructure and mechanical properties of dual phase strip steel in the overaging process of continuous annealing[J]. Materials Science and Engineering A, 2015, 627: 281-289. [8]Tisza M. Three generations of advanced high strength steels in the automotive industry[C]//Vehicle and Automotive Engineering. Springer, Singapore, 2020: 81-94. [9]De Moor E, Speer J G, Matlock D K, et al. Quenching and partitioning of CMnSi steels containing elevated manganese levels[J]. Steel Research International, 2012, 83(4): 322-327. [10]于晓飞, 曹晓恩, 薛仁杰, 等. 1.0 GPa级冷轧增强成形性双相钢的组织性能 [J]. 材料热处理学报, 2022, 43(12): 116-124. Yu Xiaofei, Cao Xiaoen, Xue Renjie, et al. Microstructure and properties of 1.0 GPa grade cold rolled dual phase steel with high formability [J]. Transactions of Materials and Heat Treatment, 2022, 43(12): 116-124. [11]陈连生, 徐静辉, 米振鹏, 等. I&Q&P工艺下碳配分时间对0.12C-1.33Mn-0.55Cu钢性能和组织的影响 [J]. 塑性工程学报, 2016, 23(6): 216-220. Chen Liansheng, Xu Jinghui, Mi Zhenpeng, et al. Effect of partitioning time on microstructure and mechanical properties of a 0.12C-1.33Mn-0.55Cu steel in I&Q&P process [J]. Journal of Plasticity Engineering, 2016, 23(6): 216-220. [12]Jiang Y, Yao S, Liu W, et al. Influence of annealing temperatures on microstructure evolution and mechanical properties in a low-carbon steel[J]. Journal of Iron and Steel Research International, 2020, 27(8): 981-991. [13]袁大勇, 尹 垒, 马善坤. Si含量及配分处理对Q&P钢残留奥氏体量及性能的影响[J]. 金属热处理, 2019, 44(3): 96-99. Yuan Dayong, Yin Lei, Ma Shankun. Effect of Si content and partitioning process on the quantity of retained austenite and property of Q&P steels[J]. Heat Treatment of Metals, 2019, 44(3): 96-99. [14]Jiang Y H, Yao S, Liu W, et al. Influence of annealing temperatures on microstructure evolution and mechanical properties in a low-carbon steel[J]. Journal of Iron and Steel Research International, 2020, 27(8): 981-991. [15]Singh S B, Bhadeshia H K D H. Estimation of bainite plate-thickness in low-alloy steels[J]. Materials Science and Engineering A, 1998, 245(1): 72-79. [16]陈梦园, 刘 卓, 吴 润, 等. 配分时间对Q&P钢组织及性能的影响[J]. 金属热处理, 2020, 45(9): 62-65. Chen Mengyuan, Liu Zhuo, Wu Run, et al. Effect of partitioning time on microstructure and properties of Q&P steel[J]. Heat Treatment of Metals, 2020, 45(9): 62-65. [17]Somani M C, Porter D A, Karjalainen L P, et al. On various aspects of decomposition of austenite in a high-silicon steel during quenching and partitioning[J]. Metallurgical and Materials Transactions A, 2014, 45(3): 1247-1257. [18]Park K, Jin K G, Han S H, et al. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition[J]. Materials Science and Engineering A, 2010, 527(16/17): 3651-3661. |